function [net, rsse, tsse] = mb_mlptrain(net, roptions, ri, ro, ti, to, epochs) % MB_MLPTRAIN(NET,ROPTIONS,RI,RO,TI,TO,EPOCHS) % [NET,RSSE,TSSE] = MB_MLPTRAIN(NET,ROPTIONS,RI,RO,TI,TO,EPOCHS) % % Outputs: % NET - neural network after training % RSSE - vector of sum of squared error for the training data % TSSE - vector of sum of squared error for the test data % % Inputs: % NET - neural network before training % ROPTIONS - 18 element vector of net options % RI - training data inputs % RO - training data outputs % TI - test data inputs % TO - test data outputs % EPOCHS - number of training epochs % % To generate NET: % net=mlp(nin, nhidden, nout, func), where func is 'linear', % 'logistic', or 'softmax'. % % To generate ROPTIONS: % roptions = zeros(1,18) ; % roptions(14) = 1 ; % Number of iterations % roptions(1) = 1 ; % Does not work unless this option is set (?) % roptions(17) = 0.9 ; % Momentum % roptions(18) = 0.001 ; % Learning Rate % % After training: % rnetout = mlpfwd(net, ri) ; % tnetout = mlpfwd(net, ti) ; % [rcmat, rcrate, rmissed] = mb_confmat(rnetout, rclass) ; % [tcmat, tcrate, tmissed] = mb_confmat(tnetout, tclass) ; % % M. Boland - 16 Feb 1999 % % $Id: mb_mlptrain.m_tmp,v 1.1 1999/06/26 14:16:36 boland Exp $ tsse = [] ; rsse = [] ; for i = 1:epochs, [net, roptions] = netopt(net, roptions, ri, ro, 'graddesc') ; rsse = [rsse roptions(1,8)] ; tsse = [tsse mlperr(net, ti, to)] ; end>>>>
>>