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Abstract—The new field of location proteomics seeks to provide
a comprehensive, objective characterization of the subcellular
locations of all proteins expressed in a given cell type. Previous
work has demonstrated that automated classifiers can recognize
the patterns of all major subcellular organelles and structures
in fluorescence microscope images with high accuracy. However,
since some proteins may be present in more than one organelle,
this paper addresses a more difficult task: recognizing a pattern
that is a mixture of two or more fundamental patterns. The ap-
proach utilizes an object-based image model, in which each image
of a location pattern is represented by a set of objects of distinct,
learned types. Using a two-stage approach in which object types
are learned and then cell-level features are calculated based on
the object types, the basic location patterns were well recognized.
Given the object types, a multinomial mixture model was built
to recognize mixture patterns. Under appropriate conditions,
synthetic mixture patterns can be decomposed with over 80%
accuracy, which, for the first time, shows that the problem of com-
putationally decomposing subcellular patterns into fundamental
organelle patterns can be solved.

Index Terms—Fluorescence microscopy, image modeling, loca-
tion proteomics, mixed-pattern decomposition, object type recog-
nition, protein subcellular location.

1. INTRODUCTION

A. Subcellular Location Pattern Recognition

A major goal of biological research in the coming decade,
frequently captured under the heading of systems biology, is
the construction of detailed models that accurately describe the
workings of cells, tissues and organisms. Each cell type has a
distinct proteome, the set of all proteins that it expresses, and an
essential step toward model construction is the thorough char-
acterization of all aspects of the proteomes of all cell types
(the term proteomics is used to describe characterization of pro-
teomes). One critical protein characteristic that is often over-
looked in proteomics efforts is subcellular location, yet knowl-
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edge of the places within cells where each protein is found is
critical to realistic model building.

The most common method for determining subcellular loca-
tion is examination by human experts of fluorescence micro-
scope images showing the distribution of fluorescently tagged
proteins. This subjective approach has a number of limitations.
The assignment of descriptive terms to each protein pattern may
differ from investigator to investigator and even for the same
investigator from trial to trial. Further, the terms used (even
when they are drawn from a standardized vocabulary, such as
the genome ontology) do not have sufficient complexity to cap-
ture the range of subtle differences in distribution that proteins
can display. Last, visual examination of images for many pro-
teins under many conditions is very labor intensive.

An alternative is to develop automated systems that can inter-
pret fluorescence microscope images in terms of the subcellular
patterns they display. We have previously constructed such sys-
tems and demonstrated that they can recognize the major subcel-
lular patterns with high accuracy in images of cultured cells [1].
Further, we have shown that the performance of these systems is
better than that of a human observer in that the automated sys-
tems can efficiently discriminate patterns (or classes) that cannot
be distinguished by visual examination [2]. Our best current sys-
tems achieve an accuracy of 92% on two-dimensional (2-D) im-
ages from ten classes [3] and 98% on three-dimensional images
from ten classes [4].

B. Subcellular Location Features (SLFs) and the “Mixture
Pattern” Problem

The most critical components of these systems we have pre-
viously described are sets of numerical features (SLFs) that cap-
ture the essence of the location patterns despite extensive varia-
tion in cell size, shape, and orientation [5]. The 2-D features are
well suited to characterize the patterns in the particular kinds of
images for which they were developed. However, they are cal-
culated at the level of each cell, and, thus, detailed information
about the individual components of the cellular patterns is not
captured. This presents a challenge when trying to recognize a
pattern that is a mixture of two or more fundamental patterns,
as, for example, in the case of a protein that localizes to both the
Golgi complex and lysosomes. In such cases, the feature values
for the mixed pattern are unlikely to be similar to the feature
values of any of the constituent fundamental patterns. Therefore,
for example, a classifier that has already been trained to recog-
nize the patterns of Golgi and lysosomes would fail to recog-
nize a mixed-Golgi-lysosome pattern as either Golgi complex
or lysosomes.
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An alternative would be to train a separate classifier for every
possible combination of fundamental patterns, which of course
is not practical due to the number of possible combinations.
Even if it were possible it would be of limited use because it
would not yield any quantitative information about how much of
the protein is in one organelle and how much in the other. A more
suitable solution would be to have a classification scheme ca-
pable of recognizing components of patterns independently. We
present here one approach to such a scheme using a two-stage
learning system incorporating recognition of the objects that
comprise subcellular patterns.

C. Object-Based Image Modeling and Problem Statement

There has been extensive work on object-based image mod-
eling, at first using predefined objects and subsequently using
learned objects [6], [7]. The typical problem is: Given input
images that contain one or more objects drawn from a certain
number of classes, find and recognize the object classes. This
is approached using a two-stage process consisting of learning
the object classes and training a classifier to recognize them.
The initial object learning is usually aided either by specifying
a general parametric form for the object types or by specifying
spatial primitives of which objects can be composed.

We are interested in solving a related problem arising in the
context of images depicting subcellular location: Given input
images drawn from two or more known image classes which
each consist of some combination of unknown object classes,
learn to recognize the image classes using the object classes.
This requires adding a third stage in which a classifier is trained
to recognize the image classes given the object classes, and pos-
sibly using the image labels to influence the object learning
in the first stage. Since proteins may be found in more than
one subcellular organelle or structure (as discussed above), it
is also critical to be able to solve a second related problem:
Given input images drawn from two or more known funda-
mental image classes which each consist of some combination
of unknown object classes, learn to use the object classes to
decompose an input image into fractions of the fundamental
classes of which it is composed.

D. Overview of Object Type Recognition

In the next several sections of this paper, we present the
details of the two-stage approach and its application on rec-
ognizing either fundamental or mixed-location patterns. Fig. 1
shows the overall approach and the section of this paper in
which each step is described. Two classifiers are required, one
to classify objects for object type recognition and the other to
classify cells for fundamental pattern recognition. We refer to
these in this paper as the object level classifier and the cell level
classifier, respectively.

II. IMAGE DATASET

To develop and test the two-stage approach, we have used a
collection of 2-D fluorescence microscope images previously
used to develop and test methods for recognizing patterns at
the whole cell level [5]. The collection was made on a cultured
human cell line, HeLa cells, grown at low density so that cells
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Fig. 1. Overall frame of object type recognition. The corresponding section of
this paper is shown in parentheses.

were in general well separated from each other and images of
single cells could easily be collected. It was collected at high
resolution (100x objective), with each pixel corresponding to
0.23 x 0.23 pm in the sample plane. The fluorescent probes
used were chosen to include all major organelles and to include
pairs of similar pattern classes so that the sensitivity of various
features and classifiers could be tested. Representative images
for the ten pattern classes are shown in Fig. 2. The numbers of
images available for each class range from 73 to 98. For each
protein image, a parallel DNA image was collected using a dif-
ferent fluorescent probe. The parallel DNA images allow com-
parison of the distribution of each protein to a common frame
of reference.

III. OBJECTS AND OBIJECT TYPES
A. Object Definition and Detection

Generally speaking, any part of the image can be viewed
as an object. For our localization pattern analysis application,
we give more interest to the regions with high intensity level,
which correspond to the regions containing high concentra-
tions of proteins (or DNA) tagged with fluorescence probes.
Therefore, an object is defined as a continuous image region
with above-threshold pixels. This definition does not attempt
to ensure correspondence to physically separate objects in the
sample, which may be overlapping and appear as a single object
in the image. We were not overly concerned about this problem
in our initial work since the high-resolution imaging separates
many object types (but this will be an area for future work).

The object detection was accomplished using automated
threshold selection [8] and connected component detection
using 8-neighbor connectivity. This process was identical to the
object finding used to calculate average object features in our
prior work [5]. There were over 61 000 objects detected in the
862 images in the 2-D HeLa collection.

B. Two-Dimensional Object-Level Features

In order to be able to separately recognize the individual com-
ponents comprising a subcellular pattern, a set of 11 features
was calculated for each object (Table I). By analogy to our prac-
tice for SLFs, we use the term subcellular object feature (SOF)
to refer to these features and define this set as SOF1.
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Fig. 2. Representative images from the 2-D HeLa image collection. The
image classes represent the distributions of (a) an endoplasmic reticulum (ER)
protein, (b) the Golgi protein giantin, (c) the Golgi protein GPP130, (d) the
lysosomal protein LAMP?2, (e) a mitochondrial protein, (f) the nucleolar protein
nucleolin, (g) the filamentous form of the cytoskeletal protein actin, (h) the
endosomal protein transferrin receptor, (j) the cytoskeletal protein tubulin, and
(k) the fluorescent probe DAPI bound to DNA. Scale bar = 10 gm. From [5].

TABLE 1
FEATURES USED TO DESCRIBE SUBCELLULAR OBJECTS

Index Feature Description

SOF1.1 Number of pixels in object

SOF1.2 Distance between object Center of Fluorescence (COF) and DNA COF
SOF1.3 Fraction of object pixels overlapping with DNA

SOF1.4 A measure of eccentricity of the object (see below)

SOF1.5 Euler number of the object

SOF1.6 A measure of roundness of the object (see below)

SOF1.7 The length of the object’s skeleton

SOF1.8 The ratio of skeleton length to the area of the convex hull of the skeleton
SOF1.9 The fraction of object pixels contained within the skeleton

SOF1.10 The fraction of object fluorescence contained within the skeleton
SOF1.11 The ratio of the number of branch points in skeleton to length of skeleton

Features 4 and 6 were defined as previously for cell classifi-
cation [5], except of course they were calculated per object, not
per cell. Features 2 and 3 are intended to describe each object in
terms of its position within the cell and the rest are morpholog-
ical descriptors. All feature values were normalized to z scores
(zero mean and unit standard deviation) across the entire object
population.

1353

AlC

3.50 S5 10 15 20 25 30 35 40
Number of Clusters
Fig. 3. Unsupervised learning of object types. Objects from all 862 images

were clustered in the 11-dimensional SOF1 feature space using the k-means
algorithm for various values of k. The average AIC over ten trials for each k is
shown.

C. Learning Object Types

The problem of recognizing image class from objects would
be greatly simplified if a simple correspondence existed be-
tween image class and object types (as reflected by their fea-
tures). This would permit training an object classifier using the
label of the image each object is found in. However, this is
not possible in our case for two reasons. The first is that some
image classes contain objects of widely varying size and shape
(making training potentially difficult). The second and more im-
portant reason is that some classes contain objects that are quite
similar. For example, the endosomal, lysosomal, ER, and mito-
chondrial patterns all contain small objects consisting of only a
few pixels.

Therefore, we used two unsupervised learning approaches to
define object classes. In the first, the objects from all ten classes
were clustered in the 11-dimensional feature space using the
batch k-means algorithm, which is especially suitable for such
large amounts of data because of its fast speed compared to other
clustering methods. A Euclidean distance metric was used for
clustering and k, the number of clusters, was chosen by trying
all values of k from 1 to 40 in ten trials and using the Akaike In-
formation Criterion (AIC) to judge which value was best. This
is similar to the approach used by Ichimura [9], except both
clustering and AIC were performed using Euclidean distance
to allow clustering with small number of objects. Fig. 3 shows
the relationship between AIC and k. While the graph shows a
fairly shallow minimum, we conclude that the subcellular lo-
cation patterns are basically composed of approximately 15-25
different types of objects. Since the AIC minimum occurred at
19, we used this value for further work. The dependence of clas-
sification accuracy on k will be discussed later.

The second approach we used for learning object types was to
cluster the objects in each cell-level class. The optimal number
of object clusters was found by AIC for each class, and ranged
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from 2 to 14. The final set of clusters was formed by combining
the clusters from each of the classes. We term this method class-
wise clustering because the clustering is done class by class.

Having learned the clusters of basic object types, the object
level classifier can be trained on these clusters to recognize the
type of any given object. For the objects defined by clustering all
classes together, object classification was done using a nearest
centroid classifier (NCC), which classifies each object into the
cluster whose centroid has the smallest Euclidean distance to
the object. This is consistent with the clustering step, which
also partitioned the training set according to distance to the cen-
troids. For objects obtained for classwise clustering, the clusters
from different classes may not be well separated by Euclidean
distance, and, therefore, an NCC classifier is not suitable to as-
sign an object from a test image to a cluster. Instead, we used
a linear discriminant analysis (LDA) classifier, which is based
on the Mahalanobis distance, as the object level classifier. LDA
requires the number of objects in the training set in each class to
be no less than the number of features, so we merged any cluster
that did not satisfy this condition into its closest cluster. This re-
sulted in from about 40 to 3000 objects per cluster.

IV. CELL-LEVEL FEATURE SETS

To recognize the pattern of a cell, information on objects in a
cell should be converted to numerical features of the whole cell.
A number of options of using the object assignments to generate
features were considered.

An obvious way to differentiate patterns is to see if they have
different frequencies of objects in each type. So, the simplest
cell-level feature set we chose was a vector of the number of
each of the object types.

One problem with this feature set is that dim objects and
bright objects have the same influence on the classification de-
spite the fact that an object with more fluorescence makes a
larger contribution to the cell-level pattern. Therefore, a second
cell-level feature set was formed by the combination of the ob-
ject number feature set and an additional feature vector of the
fraction of total cell fluorescence contained in each type.

This set does not include any of the information contained in
the individual object features, which might improve cell level
classification. Therefore, a third cell-level feature set was de-
fined to include all of the features above plus the average value
of each SOF1 feature over all objects of each type in a cell.
The total number of cell-level features in this set is, thus, 13k,
where £ is the number of object types. Due to the possible pres-
ence of correlated or uninformative features, which often exist
in a cluster with small variance, such a large number of fea-
tures can hinder the training of the classifier. Therefore, we ex-
plored whether feature reduction would improve classification
accuracy. We have previously evaluated eight methods for fea-
ture reduction, and observed that stepwise discriminant analysis
(SDA) performed the best when both performance and compu-
tational cost were considered [10]. We, therefore, applied SDA
to the features to select an informative subset. This subset was
chosen for each object type method.
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V. MIXTURE PATTERN RECOGNITION

A. Unmixing by Linear Regression

One motivation for clustering the objects into types is to
solve the problem of recognizing mixture patterns. After object
type learning, each fundamental pattern can be represented by
a vector of either frequency of objects of k types or fraction of
fluorescence in objects of k types. We construct feature matrix
A by combining these vectors of all fundamental patterns along
columns. A mixture pattern can be represented by a vector

of mixture coefficients @ = (a1, s,..., )T, where m is
the number of fundamental patterns. We can then assume that
the features of the mixture pattern y = (y1,%2,...,yx)T are

linear combination of the features of fundamental patterns. For
example, the mixture of pattern 1 with n; objects of one type
and pattern 2 with ns objects of the same type simply generates
a pattern with n; + no objects of that type. So, the task of
mixture pattern decomposition is to solve the coefficients of the
linear equation y = Aa.

From our data, the row vectors in A are all linearly indepen-
dent, which results in more equations than unknown variables
to solve (k > m) and no guaranteed exact solution of the equa-
tion. A common way to deal with this problem is to solve the
equation approximately by minimizing Zle(yl — §;)?, where
y = Aaand & = (&1, Go, ..., ay)T. This results in the solu-
tion @ = (ATA) " ATy, but the solutions do not necessarily
satisfy >, &, =1land0 < &, < 1foru=1,2,...,m.To
get valid coefficients, we repeat the following steps until there
is no negative coefficient: 1) set all negative coefficients to 0
and remove the corresponding components; 2) solve the new
equation and then go to step 1. Finally, all the coefficients are
normalized to make sure that the sum is 1. The meaning of the
coefficients changes with how A and y is defined. If A and y are
defined using the fraction of number of objects in each pattern,
then @ is the fraction of objects in each component. Alterna-
tively, if A and y are the fraction of fluorescence in each object
type, @ is the fraction of total fluorescence in each component
of the mixture pattern.

B. Multinomial Approach

As an alternative, the multinomial distribution can be used to
describe each pattern because the features are counts of discrete
categories. However, the number of objects in a cell is not a con-
stant even in the same pattern. This means that the cells of the
same pattern can not be represented by the same multinomial
distribution. So, it is more reasonable to assume that cells from
the same pattern are generated by the same multinomial trials
process except that the number of trials is varied from cell to
cell. By assuming that all objects are independent and ignoring
the number of trials, each pattern can be represented by k& pa-
rameters 0,1, ..., 0, if there are k types of objects, where u
is a label for the pattern and 6,,; is the probability that an ob-
ject from pattern u belongs to type ¢. The parameters can be
estimated as the percentage of the types in the training set, i.e.,
Out = Mt /Ny, Where n,,; is the number of objects belonging
to type ¢ in pattern u, and n,, is the total number of objects in
pattern u.
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Any mixture pattern originating from m fundamental classes
can be represented by another multinomial process with
parameters

m m m
E a'uguh E a'ugu27 RN E a'uguk
u=1 u=1 u=1

where aq, a9, ...,a,, are unknown coefficients to estimate.
This means that the probability that an object belongs to type ¢
is Z;n:l oy 0y:. We used the method of maximum likelihood to
estimate the coefficients. The likelihood function of the objects
from a mixture pattern is

L= 1:[1 (2_:1 aufu(xi)> (1)

where x1, 2, . .., z, are observed objects and fy,(z;) = Oy if
x; belongs to type t.
The estimates &1, &s, ..., , @y are values maximizing the
likelihood function, which is denoted as (&1, G, ..., 4m) =
argmax L. Each of these values represents the percentage

(g, 02,..,000,)

of objects from each fundamental pattern. It is difficult to get so-
lutions analytically; so, an iterative numerical method was used
to search for solutions. Since the sum of the coefficients must
be 1, the free parameters to be estimated are &, ag, ey Qi
without &,,,, which is substituted by 1 — ZT] Q. Max1—
mizing L is the same as maximizing log L, which is denoted as
[ here. So, the solutions are

L= argmax [

(al,az,...,am_l)
(@)

(G1,&2,...,8m_1) = argmax

(al,az ..... 3Ol — 1)

The first-order derivative of [ is

T
S P (L
80[1 80[2 8am,1

where

ol - wl\Ti)— Jm\Tq
s ful) = fnl) 5
A i) +H(1- 2 ) fa2)
and the Hessian matrix H of [ is
31 %1
Oozf 0100, 1
321 I o A
Oy, 100y 8am B
fl(wi)_fM(xi) fl(xl fm 1"1
_ . fm71<xz)_fm($z> fm 1 xz
N 3 m—1 2
=1 (Zj 1 O‘ij(wz) ( =21 O‘J wz
4)

This is a semi-negative definite matrix, which means that the
log-likelihood [ is a concave function. Therefore, the global
maximum of / can be found by Newton’s method or gradient as-
cent. Usually Newton’s method is faster than the gradient ascent
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method. The Newton’s method searches for the solutions by
starting with initial values, which are (&; (0) A(O) ,d<0) )=

m—1
(1/m,1/m,...,1/m) here. At the r + 1 step of the Newton’s
method, we have

T
” AT ~A\T T —
:(@51)704§ )»-~~70l§n)_1) -H 1w|(&‘{),d‘2),...,d“ll) (5)

but from (5), we know that it needs the Hessian matrix to be
nonsingular or invertible.

Because f,(z;) = 8y if ; belongs to type ¢, from (4) we
have

91t — gmt Hlt - Hmt T

Ny

Om—1¢ — Omt
=— . (6)
Z (Z _—1 onHJt + (1 — Z;ﬂz—ll Olj) Hmt)z

Since H is the sum of £ matrices with rank 1, the rank of H is
no more than k, i.e., H is singular while k is less than m — 1.
Therefore, the total number of types of the objects of the mixture
data must be greater than the number of fundamental patterns
minus 2 to make H invertible. This was true in our application
(k > 19 and m = 10). If H is not invertible, the gradient ascent
method can be used to search for the solution.

In our implementation, if a coefficient is smaller than a
threshold (set to 0.1 divided by the number of objects) during
estimation, it will be set to zero, which means that that compo-
nent is not present.

amt emflt —

VI. PATTERN RECOGNITION RESULTS
A. Model Development

Before attempting to properly decompose mixture patterns,
we first built cell level classifiers to test if the fundamental pat-
terns could be well recognized based on the cell-level feature
sets introduced in Section I'V. This is important because recog-
nition accuracies indicate how well basic patterns can be repre-
sented by the feature sets. The testing procedure was done by
stratified ten-fold cross validation in which the total data set
was randomly partitioned into ten subsets with approximately
equal size for each class. Then, for each of ten trials, a different
subset served as testing set and the remaining nine subsets were
used to learn object clusters and train the object level classi-
fier. The output of the object level classifier was then converted
into cell-level features. These features were fed into the cell
level classifier, which was a back-propagation neural network
(BPNN) with 20 nodes in a single hidden layer. To train the
BPNN, the training set was further divided into two subsets. The
BPNN was trained using two-thirds of the training set until the
network error on the remaining third subset reached a minimum.
Classification results from the test set were then recorded. No
provision for prior-distribution of each class was made because
all of the classes have comparable sizes. Most algorithms were
implemented using Matlab (The Mathworks, Inc., Natick, MA).
Some functions for object detection were written in C. The SDA
algorithm was done by the STEPDISC procedure of SAS
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TABLE 1I
CLASSIFICATION RESULTS FOR FUNDAMENTAL PATTERNS. THE OBJECT LEVEL CLASSIFIER WAS AN NCC ON 19 CLUSTERS USING THE 11 OBJECT FEATURES.
THE CELL LEVEL CLASSIFIER WAS A BPNN ON ONE OF THE THREE CELL-LEVEL FEATURES. A: NUMBER OF OBJECTS. B: NUMBER OF OBJECTS
AND FLUORESCENCE FRACTION. C: NUMBER OF OBJECTS, FLUORESCENCE FRACTION, AND SUMMARIZED OBJECT-LEVEL FEATURES.
FOR THE LAST FEATURE SET, SDA WAS APPLIED TO SELECT BEST FEATURES. SO, NUMBER OF FEATURES VARIES
ACROSS TRIALS (57-70) (UA: USERS ACCURACY; PA: PRODUCERS ACCURACY; OA: OVERALL ACCURACY)

Feature Set

Class

DNA ER Giant GPP LAMPMito. Nucle. Actin TfR Tubul. OA(%) KAPPA

UA(%) 83 63 52 54

60 60 77 77 68 59

A 66  0.62
PA(%) 100 72 18 8 67 36 81 8 55 64
UA(%) 8 69 58 53 66 62 8 81 69 69

B 70  0.67
PA(%) 100 76 39 62 67 49 8 8 62 75
UA(% 95 77 63 59 67 8 8 91 67 67

C (%) 75 072
PA(%) 99 8 49 60 68 59 91 91 62 82

TABLE TII

CLASSIFICATION RESULTS FOR SUMMARIZED OBJECT FEATURES. THE OBJECT LEVEL CLASSIFIER WAS AN NCC ON THE 11 OBJECT FEATURES.
THE CELL LEVEL CLASSIFIER WAS A BPNN ON 57-70 FEATURES SELECTED FROM THE 247 CELL-LEVEL FEATURES BY SDA.
THE VALUES ARE THE PERCENTAGE OF IMAGES IN EACH TRUE CLASS THAT ARE CLASSIFIED IN EACH OUTPUT CLASS.
THE OVERALL CORRECT CLASSIFICATION RATE WAS 75% (82% AFTER MERGING THE TWO GOLGI CLASSES)

Output of the Classifier
True Classification DNA ER Giant GPP LAMP Mito. Nucle. Actin TfR Tubul.
DNA 99 1 0 0 0 0 0 0 0 0
ER 0 8 0 0 3 0 0 0 1 7
Giantin 0 0 49 40 2 0 3 0 5 0
GPP130 0 0 27 60 6 0 6 0 1 0
LAMP2 1 4 2 0 68 0 2 0 21 1
Mitoch. 0o 7 0 0 3 59 0 5 1 25
Nucleolin 5 0 0 0 4 0 91 0 0 0
Actin 0 0 0 0 0 3 0 91 1 5
TR 0 9 0 0 14 3 1 3 62 8
Tubulin 0 7 0 1 0 5 0 2 2 82

(SAS Institute, Cary, NC). The codes for k-means algorithm
and BPNN were from the NETLAB library (available at
http://www.ncrg.aston.ac.uk/netlab) for Matlab.

Having shown that the object-based models worked well for
recognizing fundamental patterns, we next considered their use
for unmixing mixture patterns. We simulated mixture patterns
by randomly generating mixture patterns from the test set. We
again used ten-fold stratified cross validation. The training data
were used to learn object types. For each fold, a set of 100 mix-
ture patterns were generated by three steps: 1) randomly decide
which fundamental patterns are going to be included in each
trial; 2) randomly select one cell from the test set of each pat-
tern; and 3) combine the objects of these cells to form a syn-
thetic object mixture. Each object of the mixture pattern was
then classified. The accuracy was calculated by the percentage
of the objects that are accurately recognized, which can be cal-
culated by ", min(«;, &;). The overall accuracy was the av-
erage of accuracy rates of all trials from the ten folds and 100
trials were carried out for each fold. It is expected that if there are
more samples of the same mixture pattern to decrease the risk
of outliers, we can get better results. We, therefore, also tested
mixtures composed of two or more cells from each fundamental
pattern.

B. Basic Pattern Recognition

Table II shows the classification results averaged across ten
cross-validation trials based on the three feature sets from 19

types. The average correct classification rate increased when
more features are used. The best average classification accuracy
(75%) was obtained from using a combination of number, flu-
orescence, and summarized object-level features. We interpret
the improvement to be mainly due to the inclusion in the sum-
marized SOF of information about the spatial distribution of ob-
jects that was not captured using number of objects and fraction
of fluorescence alone. Table III shows the confusion matrix of
classification based on this feature set. It is shown as percent-
ages because all classes have comparable sizes. We also note
that the two Golgi classes are still difficult to distinguish, as we
might expect since these are indistinguishable by visual exami-
nation [2]. If these two classes are merged, we obtain an average
accuracy of 82% for the nine major patterns present in the 2-D
HeLa collection.

Although including summarized object-level features results
in better cell-level classification accuracy, there are advantages
in having a feature set consisting of only object numbers. These
include simplicity of building generative models and ease of un-
mixing combined patterns. We, therefore, sought ways to im-
prove the discriminating power of the object types.

A simple approach could be to use more clusters. Fig. 4 shows
classification accuracy as a function of the number of clusters
obtained from k-means clustering. The accuracy from 19 clus-
ters is close to the maximum accuracy (71%) in the figure. While
the object clustering approach described above can help us find
the statistically significant clusters, it does not guarantee that
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TABLE 1V
CLASSIFICATION RESULTS FOR OBJECT TYPES LEARNED BY CLASSWISE CLUSTERING. THE OBJECT LEVEL CLASSIFIER WAS AN LDA ON 56—-68 CLUSTERS ON THE
11 OBJECT FEATURES. THE CELL LEVEL CLASSIFIER WAS A BPNN USING THE NUMBER OF OBJECTS IN EACH CLUSTER AS 56—-68 CELL-LEVEL FEATURES.
THE OVERALL CORRECT CLASSIFICATION RATE WAS 72% (81% AFTER MERGING THE TWO GOLGI CLASSES)

Output of the Classifier
True Classification DNA ER Giant GPP LAMP Mito. Nucle. Actin TfR Tubul.
DNA 93 2 2 1 0 1 0 0 0 0
ER 0 69 0 1 5 2 0 0 6 15
Giantin 0 0 57 36 1 3 1 1 1 0
GPP130 0 0 39 55 5 0 0 0 1 0
LAMP2 0 2 5 7 56 0 0 0 26 0
Mitoch. 1 7 0 5 3 66 0 5 7 4
Nucleolin 0 4 5 1 1 0 88 0 1 0
Actin 0 1 0 0 0 2 0 88 1 8
TR 0 5 1 0 14 10 0 0 64 5
Tubulin 0 4 0 1 0 8 0 1 1 85
8 ' N ' between objects. We, therefore, added 13 texture features and
e eee s e e oot five edge features because of their effective description of the
O X e e U L patterns at the cell level [2] and defined this set as SOF2. The
el Cout classwise clustering method was performed for the new feature
& % set. Although it only resulted in a slight improvement in the av-
) 0 erage accuracy (from an average of 72%-73%; data not shown),
3 . it turned out to be helpful for mixture pattern recognition.
-% o C. Results of Mixture Pattern Recognition
:-E As described above, we generated synthetic mixtures to test
8 our ability to unmix patterns. Using the 11 SOF1 object fea-
© 20p tures, the overall accuracy of unmixing obtained by linear re-
gression was 39% for k-means clustering on 19 clusters and
50% for classwise clustering. The accuracy increased to 55%
) . . when SOF2 features were used in clustering. For the multino-
% 20 40 60 g0 mial approach, the best overall accuracy of decomposition was

Number of Clusters

Fig. 4. Cell-level overall classification accuracies for different numbers of
clusters learned by batch k-means. The object level classifier was an NCC on
the 11 object features and the cell level classifier was a BPNN on number of
objects.

the clusters are optimal for classification based on object num-
bers. For example, two populations that are almost completely
linearly separable might be merged into one cluster if they are
close to each other in the feature space. Such a merge will as-
sign the objects in the two distinguishable groups only to one
type so that they will be unable to contribute to distinguishing
the two classes they are derived from.

We, therefore, designed a classwise clustering approach to
avoid this problem, as described in Section III-C. Table IV
shows the confusion matrix based on object types learned by
classwise clustering. When the two Golgi classes were merged,
the overall accuracy improved to 81%. This is nearly as high as
the best performance (82%) we obtained so far (Table III), but
it is important to note that it was achieved using only cluster
membership as features. Comparison of Table II (feature set
A), and Table IV shows that using classwise clustering in
the first stage improved the cell-level classification accuracy
by an average of 6%. The largest improvements were in the
mitochondrial and tubulin classes.

Another possible approach to improve the clustering is to use
more features to describe each object, since the additional fea-
tures create more chances of detecting significant differences

also obtained from the clusters learned from the SOF2 features
by classwise clustering (61%, versus 40% and 57% for the other
two clustering approaches). Therefore, we used these clusters
for our further experiments on mixture pattern recognition.
Table V shows the average mixture pattern recognition accu-
racies that were obtained when different numbers of cells were
selected per pattern. There is significant improvement of perfor-
mance of the decomposition with the increasing number of sam-
ples. When the decomposition was done as a fraction of fluo-
rescence in each pattern, much higher accuracies were obtained
than for fraction of object numbers. This is reasonable because
the sum of square errors to minimize was no longer dominated
by fundamental patterns with large number of objects. The ac-
curacies can be further increased by merging confusing patterns,
either just merging the two Golgi proteins to give nine classes,
or also merging the LAMP and TfR classes to give eight classes.
The counterpart of results in Table V was calculated for the
multinomial approach to compare this method with the linear
regression. Table VI shows the average mixture pattern recog-
nition accuracies that were obtained when different numbers of
cells were selected per pattern. The accuracies increased with
the number of cells. If we merged the two pairs of confused
patterns, giantin-GPP130 and LAMP-T{R, the average decom-
position accuracy increased to 76% when five cells per pattern
was used for trials. As we observed for the results of linear re-
gression, when the accuracy is expressed as a fraction of fluo-
rescence in each pattern [Table VI(b)], the accuracy rises to 83%
for five cells drawn from each of the eight major patterns. These
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TABLE V
ACCURACY OF UNMIXING SYNTHETIC MIXTURES OF OBJECTS FROM
DIFFERENT SUBCELLULAR LOCATION PATTERNS USING LINEAR
REGRESSION. A) EXPRESSED AS PERCENTAGE OF OBJECT
CORRECTLY CLASSIFIED. B) EXPRESSED AS PERCENTAGE
OF FLUORESCENCE IN OBJECTS CORRECTLY CLASSIFIED

A)
No. cells/pattern
1 2 3 4 5
All 55 59 62 63 64
Merge Golgi 54 60 62 64 66
Merge Golgi,
LAMP-TIR 58 63 67 68 68
B)
No. cells/pattern
1 2 3 4 5
All 64 70 72 74 74
Merge Golgi 70 74 76 77 78
Merge Golgi,
LAMP-TfR 73 78 79 81 81
TABLE VI

ACCURACY OF UNMIXING SYNTHETIC MIXTURES OF OBJECTS FROM
DIFFERENT SUBCELLULAR LOCATION PATTERNS USING MULTINOMIAL
MODELS. A) EXPRESSED AS PERCENTAGE OF OBJECT CORRECTLY
CLASSIFIED. B) EXPRESSED AS PERCENTAGE OF FLUORESCENCE
IN OBJECTS CORRECTLY CLASSIFIED

A)
No. cells/pattern
1 2 3 4 5
All 61 65 69 71 72
Merge Golgi 63 68 71 72 74
Merge Golgi,
LAMP-TfR 66 70 72 74 76
B)
No. cells/pattern
1 2 3 4 5
All 66 71 73 74 76
Merge Golgi 70 75 78 79 80
Merge Golgi,
LAMP-TTR 74 79 81 82 83

results would be expected to be comparable to those obtained
from a corresponding number of cells showing a real mixture
pattern.

VII. SUMMARY AND DISCUSSION

The work described here addresses the difficult task of
extending a system that recognizes different classes of scenes
(cells) to recognize new scenes comprised of mixtures of objects
from the original scenes. The problem is made more difficult
in this case because the number of allowed combinations is not
known in advance. As an initial approach, cluster analysis was
used to discover the fundamental types of objects present in 2-D
cell images and to show that sufficient information is retained in
the individual objects so that they can be used to recognize the
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image class they were derived from with reasonable accuracy.
Whereas the individual cell classification accuracy was not
quite as high as obtained previously for cell-level classification
of 2-D images, it was high enough to encourage further work.
As we have demonstrated previously, the cell-level accuracy
can be increased dramatically if images of more than one cell
are available [5].

We next extended the object learning approach to build sys-
tems that for the first time can analyze mixed-organelle patterns
by quantitatively decomposing them into fundamental patterns.
We also found, as expected, that the results could be improved
by using information from more than one cell. The ability to do
mixture decomposition will be critical in the next few years to
support efforts to collect and analyze subcellular location im-
ages on a proteome-wide basis [11]-[14]. While the patterns
used for our initial studies were chosen to represent “funda-
mental” classes, we know that many proteins in future images
will be present in more than one structure or organelle. Thus,
the work described here can be used to determine the fraction
of each protein that is found in various organelles and to mon-
itor how those fractions change under various conditions, such
as in the presence of drugs or disease.

Although the mixture models described here were built using
a feature set of object numbers, they can be extended to any fea-
ture set. All that is needed is a way to estimate the statistical dis-
tribution of the features and an approach to find the maximum
likelihood estimates. It is hard to derive a parametric distribu-
tion for high-dimensional features. Fortunately, many nonpara-
metric methods have been developed. The advantage of these
methods is that they do not require any prior assumptions about
the data distribution. Therefore, we can potentially make use of
any feature set that is good for classification for mixture pattern
recognition.

Without a statistical distribution of object features, the model
can still be improved by using a more appropriate clustering
method for object learning. Although the k-means algorithm
using Euclidean distance is easily implemented and fast, it only
works best for clusters with spherical shapes. In the future, we
plan to try clustering methods that have more flexible separation
boundaries to separate clusters, such as clustering with minimal
spanning trees [15].

Regardless of whether the features are computed on a per cell
or a per object basis, the feature values are totally dependent on
the definition of what an object is. It is easy to define an object as
a continuous region of pixels that are above a certain threshold,
as we have here. However, in the case of a filamentous protein
such as tubulin it might be desirable to define each filament as
an object. With the simple definition used here, the tubulin pat-
tern of a cell typically contains just one large mesh-like object
because many tubulin filaments criss-cross throughout the cell.
Therefore, we plan to explore more natural definition of objects
in the future. For example, we can define an object as a region
with uniform texture and then use texture extraction methods
[16]-[18] to detect objects.

Based on our success at recognizing major patterns, we have
previously extended this approach to unsupervised learning of
many different protein patterns. This can be done by 1) gener-
ating high-resolution, fluorescence microscope images with all
possible location patterns by randomly tagged all expressed pro-
teins and 2) using image analysis approaches to group proteins
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by their location patterns. We have used the term location pro-
teomics to describe this new approach [14], [19]. The promise
of location proteomics is to use discovery methods to create for
the first time a complete understanding of the process by which
proteins are localized in cells. The work described in this paper
will provide an important new capacity, the ability to build ob-
ject models from fundamental patterns. This will enable the de-
scription of every protein pattern using generative models, a crit-
ical component of systems biology approaches to modeling all
aspects of cell behavior.
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