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ABSTRACT 

 
Fluorescence microscope images capture information from 
an entire field of view, which often comprises several cells 
scattered on the slide. We have previously trained 
classifiers to accurately predict subcellular location 
patterns by using numerical features calculated from 
manually cropped 2D single-cell images. We describe here 
results on directly classifying fields of fluorescence 
microscope images using a subset of our previous features 
that do not require segmentation into single cells. Feature 
selection was conducted by stepwise discriminant analysis 
(SDA) to select the most discriminative features from the 
feature set. Better classification performance was achieved 
on multicell images than single-cell images, suggesting a 
promising future for classifying subcellular patterns in 
tissue images. 

 

1. INTRODUCTION 
 
Subcellular location is an important characteristic of 
proteins in that it represents the biochemical context of 
protein functionality. With the development of highly 
sensitive probes and high-throughput imaging instruments, 
fluorescence microscopy has become the major tool to 
study protein subcellular distributions. Until recently, 
visual inspection was the only way to distinguish different 
subcellular patterns in microscope images. Our group has 
developed systematic approaches to describe subcellular 
location, including building classifiers that can recognize 
all major subcellular patterns in single-cell fluorescence 
microscope images [1-4]. Our single-cell image features 
cover a variety of subcellular distribution properties such 
as morphology, texture, moments, and geometry. About 
92% and 96% average accuracy over ten major subcellular 
structures were achieved for 2D and 3D single-cell images 
respectively (Huang and Murphy, submitted). Although 
several automatic cell segmentation methods have been 
described [5-7], they either require extra labeling of the 
nucleus and plasma membrane or depend on specific 

model assumptions that do not perform very well for 
arbitrary fluorescence microscope images. Instead, we 
would like to classify protein subcellular distribution 
patterns directly on multicell images, each of which 
contains a single protein labeled in different cells. 
 

2. MULTICELL IMAGE CLASSIFICATION 
 

2.1 Multicell Image Features 

 
To describe the subcellular distribution of a protein in 
multicell images, robust features are needed that are 
independent of the number and rotation of cells. As an 
initial approach, we identified the features from our most 
powerful current feature set, SLF7 [8], that do not require 
segmentation into single cells. 
 

Morphological Features 

13 single-cell morphological features (Table 1) that are 
independent of the number of cells were selected from 
SLF7. These features describe the property of objects and 
edges in an image and therefore are independent of cell 
rotation as well.  
 

Haralick Texture Features 

The 13 Haralick texture features used for single-cell image 
classification [1] all apply equally well to multicell images 
in that they represent statistics of co-occurrences of gray-
level pixels. In calculating Haralick texture features, four 
gray-level co-occurrence matrices from horizontal, 
vertical, and two diagonal directions are averaged to 
achieve rotation invariance. Since texture essentially 
represents repetitive local patterns in an image, texture 
features are invariant of the number of cells and should 
even work for partial cells. Haralick texture features are 
affected by the number of gray levels and the pixel size in 
an image. We have previously shown that the most 
discriminative Haralick texture features for classifying 
subcellular patterns can be generated using 256 gray levels 
for an image that has a pixel width of 1.15 micron [8]. 
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Since most modern fluorescence microscopes can acquire 
images with resolution and pixel intensity higher than 
these values, we suggested that for analysis of subcellular 
patterns that input images should be re-sampled to 1.15 
micron/pixel and re-quantized in 256 gray bins before 
Haralick texture feature calculation.  This procedure was 
therefore followed here. 
 

2.2 Support Vector Machine Classifier 

 
Support vector machines (SVM) represent a generalized 
linear classifier that looks for the maximum margin 
hyperplane in the feature space after transformation by a 
kernel function [9]. Given a learning problem described in 
a feature space, the task of a classifier is to find the 
optimal decision boundary that minimizes some 
predefined cost function. More often than not, the decision 
boundary is nonlinear and hard to represent in closed 
form. SVM employs a kernel function, which is often 
nonlinear, to map the dataset from the original feature 
space to a very high, sometimes unlimited, dimensional 
space, where the previous decision boundary becomes 
linear. The choice of the maximum margin hyperplane in 
the transformed feature space guarantees minimization of 
the upper bound of the expected prediction error of the 
SVM. Compared to other classifiers such as neural 
networks and AdaBoost, SVM is faster to train and 
therefore is often used in tasks that require heavy 
parameter tuning. 
 

Several methods have been described to extend the 
original binary SVM [9-11]. The max-win strategy 
employs k binary SVMs in a k-class problem, each of 
which separates class j from non-j. The class with the 
highest value is chosen. The pair-wise strategy trains k(k-
1)/2 binary SVMs for each class pair. The class voted for 
most frequently by all binary SVMs is selected as the 
output. The DAG method instead put the above k(k-1)/2 
binary SVMs in a rooted binary DAG. The loser class gets 

removed at each node and the surviving class after tracing 
down from the root to a leaf node is selected as the output. 
We evaluated SVMs of Gaussian kernel with different 
variances and error penalties under all three multi-class 
strategies. The evaluation was conducted by using an 
SVM toolbox downloaded from 
http://theoval.sys.uea.ac.uk/~gcc/svm/toolbox/ along with 
10-fold cross validation.  
 

2.3 Feature Selection 

 
The features described above might contain redundancies. 
Some of them might also be non-discriminative (i.e., not 
able to contribute to the classification task). Our previous 
results have shown that feature reduction can increase 
classification accuracy as well as speed up a classifier [1, 
3]. Among a group of eight different feature reduction 
methods, stepwise discriminant analysis (SDA) was 
ranked as the best feature selection method for subcellular 
pattern classification [3]. We therefore applied SDA to 
improve our classification performance by selecting the 
most discriminative features from our feature set.  
 

2.4 Image Dataset 

 
To test the feasibility of directly classifying subcellular 
patterns in multicell images, we created a set of images 
with various numbers of cells from cropped single HeLa 
cell images. These include fluorescence microscope 
images representing ten major subcellular structures [2]. 
Each cropped image was preprocessed by subtracting 
image background followed by generating a rectangular 
bounding box surrounding the cell region. 2-6 these 
bounding boxes were mixed randomly to form a multicell 
image. 50 multicell images were created for each class, 
resulting in a total of 500 multicell images which have 
various numbers of cells (each multicell image contained 

SLF Index Multicell Morphological Feature Description 
The average number of pixels per object 
The variance of the number of pixels per object 
The ratio of the size of the largest object to the smallest 
The fraction of the non-zero pixels in a cell that are along an edge 
The fraction of all values that fall in the first two bins of the edge intensity histogram 
The ratio of the largest to smallest value in the edge intensity histogram 
The ratio of the largest to the next largest value in the edge intensity histogram 
The edge direction difference 
The average length of the morphological skeleton of objects 
The average ratio of object skeleton length to the convex hull area of the skeleton 
The fraction of object pixels contained within the skeleton 
The fraction of object fluorescence contained within the skeleton 

SLF1.3 
SLF1.4 
SLF1.5 
SLF7.9 
SLF7.10 
SLF7.11 
SLF7.12 
SLF7.13 
SLF7.80 
SLF7.81 
SLF7.82 
SLF7.83 
SLF7.84 The ratio of the number of branch points in the skeleton to the length of the skeleton 

Table 1. Descriptions of multicell morphological features. 
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only one of the ten subcellular patterns). Figure 1 displays 
an example image for each pattern.  

 
3. EXPERIMENTAL RESULTS 

 

3.1 Classification Results 

 
Each of the two feature subsets described above and their 
combination were first evaluated using a DAG Gaussian-
kernel SVM with a variance level 0.01 and error penalty 
20 [3] along with 10-fold cross validation. The results are 
summarized in Table 2. The Haralick texture feature 
subset achieved much higher precision and recall than the 
morphological feature subset. The combination of 
Haralick and morphological features yielded the highest 
precision and recall among the three feature sets. Less than 
5% improvements were observed for the combined feature 
set over the Haralick feature subset alone, suggesting that 
redundancy existed between the two feature subsets.  
 

To find the optimal parameter setting for a Gaussian-
kernel SVM, we employed the entire feature set composed 
of both the Haralick and morphological features to 
evaluate Gaussian-kernel SVMs with 10-fold cross 
validation across many different variance levels and error 
penalties under all three multi-class strategies. None of the 
pair-wise multi-class strategy gave an average recall over 
20%, suggesting that the assumption of this approach, that 
is no bias is given to an unknown class for each binary 
classifier, does not hold in our problem. The max-win and 
DAG strategies achieved close performance on most 
parameter choices. The resulting recalls showed that the 
optimal parameters for a Gaussian-kernel SVM on our 
multicell image dataset with the entire feature set were 
composed of a variance level of 0.01, an error penalty of 

25, and the max-win multi-class strategy. A marginal 
improvement in performance over that in Table 2 was 
achieved using the parameter-tuned SVM, which yielded a 
precision and recall of 94.8% and 94.8% respectively. The 
confusion matrix is displayed in Table 3, where the two 
Golgi proteins, giantin and gpp130 (which we have shown 
are visually indistinguishable [8]), can be distinguished 
with a recall over 98%. The endosomal and tubulin 
patterns were the hardest for our current features and 
classifier, which suggested future work on designing better 
features to characterize their properties. 
 

3.2 Feature Selection 

 
To address the feature redundancy observed in our feature 
set, stepwise discriminant analysis (SDA) was conducted 
using the entire feature set containing 26 features. The 
max-win Gaussian-kernel SVM from above was used 
along with 10-fold cross validation to evaluate the 
effectiveness of the top-ranked features. The highest recall 
of 93% was achieved by using all 23 features returned 
from SDA. Although feature selection did not improve our 
original performance with the entire feature set, valuable 
insights can be obtained by inspecting the features ranked 
by SDA. Table 4 shows the top 15 features returned from 
SDA. The top 7 features were all Haralick texture features 
followed by the edge fraction feature (SLF7.9). Two more 
Haralick texture features were selected before the average 
object size feature (SLF1.3), two skeleton features 
(SLF7.81-82), and one edge feature (SLF7.11) were 
included. 9 out of the 10 top features returned from SDA 
were Haralick features and all 13 Haralick texture features 
were returned by SDA. The feature selection results along 
with the observed classification performance confirm the 

Figure 1. Example multicell HeLa images depicting ten major subcellular location patterns. The targets labeled include an 
endoplasmic reticulum protein, two Golgi proteins Giantin and Gpp130, LAMP2 in lysosomes, a mitochondria outer membrane 
protein, the nucleolar protein nucleolin, f-actin and tubulin in the cell skeleton, transferring receptor from endosomes, and DNA. 
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strong discriminative ability of the Haralick feature subset 
for the purpose of analyzing subcellular images. 
 

4. CONCLUSION 
 
We described a successful approach to classifying 
subcellular patterns in multicell fluorescence microscope 
images. Better performance was achieved by classifying 
2D multicell fluorescence microscope images than for 
single-cell images, which can be partially attributed to the 
greater amount of pattern information contained in 
multicell images. The feature subsets adapted from our 
previous single-cell image feature set worked successfully 
on multicell images. Haralick texture features 
demonstrated more discriminative capability than 
morphological features in both the classification and 
feature selection experiments. We are currently 
researching the effects of a variety of extensions to our 
approach, including analysis of multicell images that 
contain multiple subcellular patterns, and multicell images 
that contain overlapping cells and partial cells. We hope 
that our work on multicell images will extend smoothly to 
classifying subcellular patterns in tissue images without 
cell segmentation.   
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Feature Set Precision (%) Recall (%) 
13 Haralick texture features 88.8 89.0 
13 Morphological features 76.6 75.8 
Haralick + Morphological 93.1 93.2 
Table 2. Evaluation of the two feature subsets and their 
combination using a DAG Gaussian-kernel SVM along with 
10-fold cross validation. 

SLF Index Feature Description 
SLF7.76 Haralick: difference entropy 

SLF7.68 Haralick: correlation 

SLF7.74 Haralick: entropy 

SLF7.69 Haralick: sum of squares variation 

SLF7.78 Haralick: info. measure of correlation 2 

SLF7.70 Haralick: inverse difference moment 

SLF7.72 Haralick: sum variance 

SLF7.9 Morph: edge pixel fraction 

SLF7.77 Haralick: info. measure of correlation 1                

SLF7.71 Haralick: sum average 

SLF1.3 Morph: average object size 

SLF7.82 Morph: skeleton object fraction 

SLF7.81 Morph: skeleton length to convex hull ratio  

SLF7.11 Morph: max/min in the edge intensity 
histogram 

SLF7.73 Haralick: sum entropy 

Table 4. Top 15 features returned by stepwise discriminant 
analysis (SDA) after feature selection on the entire feature set. 

Output of Classifier True 
Class DN ER Gia gpp LA Mit Nuc Act TfR Tub
DNA 100 0 0 0 0 0 0 0 0 0 
ER 0 96 0 0 0 0 0 0 4 0 
Gia 0 0 100 0 0 0 0 0 0 0 
Gpp 0 0 2 98 0 0 0 0 0 0 
Lam 0 0 0 4 94 0 0 0 2 0 
Mit 0 0 0 2 0 96 0 0 2 0 
Nuc 0 0 0 0 0 0 100 0 0 0 
Act 0 0 0 0 0 0 0 100 0 0 
TfR 0 4 0 0 2 4 4 0 82 4 
Tub 0 4 0 0 2 4 0 0 8 82 

Table 3. Confusion matrix for a max-win Gaussian-kernel SVM 
classifier using the entire feature set. The average precision and 
recall are both 94.8%.  
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