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The goal of proteomics is the complete characterization of all proteins. Efforts to characterize subcellular location have been limited
to assigning proteins to general categories of organelles. We have previously designed numerical features to describe location patterns
in microscope images and developed automated classifiers that distinguish major subcellular patterns with high accuracy (including
patterns not distinguishable by visual examination). The results suggest the feasibility of automatically determining which proteins
share a single location pattern in a given cell type. We describe an automated method that selects the best feature set to describe
images for a given collection of proteins and constructs an effective partitioning of the proteins by location. An example for a limited
protein set is presented. As additional data become available, this approach can produce for the first time an objective systematics
for protein location and provide an important starting point for discovering sequence motifs that determine localization.

INTRODUCTION

The biotechnology revolution, especially the develop-
ment of high-throughput technologies, has led to a rapid
explosion of biological raw data that could not been imag-
ined a few decades ago. For the first time in history, biolo-
gists can perform metaanalysis on available experimental
data (largely unorganized) in order to generate hypothe-
ses for the mechanisms by which cells, tissues, and organ-
isms carry out their specialized functions. Until recently,
systematic efforts to describe protein location have been
limited to the assignment by database curators of a rel-
atively small set of terms to each protein. While the re-
cent development of restricted vocabularies for this pur-
pose (most prominently the Gene Ontology Consortium
cellular component ontology) has been an important step,
such vocabularies do not have the ability to uniquely iden-
tify the many (probably on the order of a hundred) dis-
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tinct, complex subcellular patterns displayed by proteins.
To complement these approaches, we have applied pattern
recognition and machine learning methods to this gen-
eral problem, and coined the term “location proteomics”
to describe the branch of proteomics that systematically
and objectively studies the location patterns of individual
proteins and their relationships [1].

Cells vary greatly in their size, shape, intensity, po-
sition and orientationation in fluorescent images, and
consequently raw pixel intensity values are not very useful
in location pattern recognition in general. The core of our
group’s previous work has been the development of sets of
numerical features (termed subcellular location features,
or SLFs) to represent the patterns of proteins seen in flu-
orescence microscope images without being overly sensi-
tive to changes in intensity, rotation, and position of a cell
[2, 3]. These numerical descriptions of subcellular loca-
tion have been validated by developing automated clas-
sifiers that can correctly assign previously unseen images
to the major classes of subcellular structures or organelles
[2, 3, 4, 5].

With the development of automated high-resolution
microscopy technology [6, 7], the capability now exists
for capturing high-resolution 3D fluorescence microscope
images of protein subcellular distributions. Coupled with
technologies that create cell lines expressing randomly
tagged proteins [8, 9], it is possible to collect large num-
bers of images for diverse proteins in a given cell type
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Figure 1. Flow chart for clustering protein subcellular location patterns.

within a reasonable time scale. The work described in this
paper tries to approach the ultimate goal of determining
which proteins imaged in such a project share the same lo-
cation pattern. The problem could be stated alternatively
as follows. Given a set of proteins, each with multiple image
representations, find a partitioning of the protein set such
that images from members in the same partition show a sin-
gle location pattern.

From the computational view, the task of finding the
optimal grouping of a set of proteins based on their sub-
cellular location patterns can be described as finding the
maximum number of partitions so that the SLF features
of proteins within the same partition are statistically in-
distinguishable while the features for any two proteins
from different partitions are distinguishable. This is the
classic clustering problem. It is formally identical to those
appearing in many other fields, such as identifying gene
clusters from mRNA expression levels. In our case, how-
ever, image features are measured on widely varying scales
with different units while mRNA expression levels are at
least all expressed in the same units. This inhomogeneity
of units complicates the process of feature selection and
distance definition.

Building on our initial work demonstrating the use of
the SLF to build subcellular location trees [1], we describe
here clustering approaches for constructing objective par-
titionings of proteins by location. We started by making
what we consider to be a reasonable assumption: that the
majority of images for a specific protein in interphase cells
should show the same location pattern. Under this as-
sumption, we propose a method (shown as a flow chart
in Figure 1) for automatically determining the number of
partitions for the dataset and performing the partitioning
accordingly.

METHODS

Image acquisition

A set of NIH 3T3 cells clones each expressing a dif-
ferent GFP-tagged protein were obtained by CD-tagging
[10]. The acquisition of high resolution 3D images of
these clones by spinning disk confocal microscopy has
been described [1]. Briefly, the pixel spacing in both direc-
tions in the image plane was 0.11 µm and the vertical spac-
ing between adjacent planes (slices) was 0.5 µm. The gray
level of each pixel is between 0 and 4095 (12 bits per pixel).

The resulting 1280× 1024× 31 3D images each contained
from 1 to 3 cells. Ninety differently tagged protein clones
(with 8 to 33 cells per clone) were included in the current
study. Example images are shown in Figure 2.

Image preprocessing and segmentation

The procedures employed in image preprocessing
have been described in detail previously [3, 11]. In brief,
background in each image was removed and single-
cell images were obtained through image segmentation
(either automated or manual). Single-cell images were
then thresholded using an automated method.

Feature extraction and optimization

The SLFs used in the current study can be divided into
three categories:

(i) morphological features [5], based on finding the
fluorescent objects in an image. A fluorescent ob-
ject is a set of connected pixels with above threshold
intensities,

(ii) edge features [1], which capture the amount of flu-
orescence distributed along edges,

(iii) haralick texture features [1, 12], based on the gray
level co-occurrence matrix of an image, which cap-
ture the correlation between adjacent pixel intensi-
ties.

This combination of features (previously defined as
3D-SLF11) were extracted on the preprocessed single-cell
images according to procedures described previously [1,
5, 12] with one modification. Previous studies suggested
that pixel resolution and gray levels could potentially in-
fluence the discriminating power of the Haralick texture
features [12, 13]. Therefore, the Haralick texture features
were calculated at various degrees of downsampling (to
0.5, 1.0, 1.5, 2.0, and 2.5 µm pixel size) and various num-
bers of gray levels (16, 64, and 256). The optimal values
for the current dataset were determined as 0.5 µm pixel
size and 64 gray levels using the method described in
[12].

Feature selection

For an arbitrary collection of proteins, it is not a trivial
task to identify the optimal feature set to use for clustering
them. One idea is to generate a number of different feature
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Figure 2. Selected images from the 3D 3T3 image dataset. Tagged protein names are shown with a hyphen followed by a clone number
if the same protein was tagged in more than one clone in the dataset. Representative images are shown for (a) Atp5a1-1, (b) Ewsh, (c)
Glut1, (d) Tubb2-1, (e) Canx, and (f) Hmga1-1. The top portion of each panel shows a projection on the x-y plane and the bottom
shows a projection on the x-z plane.

sets and to use them to train a classifier that tries to dis-
tinguish every protein in the collection. We then consider
the best feature set available to be the one with the highest
overall classification accuracy. Of course, the overall ac-
curacy is not an accurate estimate of the classifier’s true
discriminating power since some proteins in the collec-
tion may share a single location pattern. These proteins
would be indistinguishable for a classifier and the classi-
fication result among these proteins could be largely ran-
dom (lowering the overall accuracy). However, that accu-
racy is still a good metric for choosing a feature set since
it will increase as informative features are added and de-
crease as they are removed.

Stepwise discriminant analysis (SDA) was used for se-
lection of those “informative” features that support the
discrimination between proteins with different patterns.
The stepdisc function of SAS (SAS Institute, Cary, NC)
was used with default parameter values (stepwise selection
method, all variables included in the model calculation,
start from no variable in the model, use 0.15 as the signif-
icance level for adding or retaining variables). The input
to SDA was the full feature matrix for all cells for all clones
and the output was a ranked list of features that were con-
sidered to contribute to distinguishing the clones.

To select the optimal feature subset for clustering, in-
creasing numbers of the ranked features were used to

train classifiers to try to distinguish each protein clone
as described previously [12] with one exception: in-
stead of the neural network classifier, we used a support
vector machine (SVM) classifier with max-win strategy
[14].

Distance function

As a starting point for this work, we used (1) a Eu-
clidean distance function, which calculates the distance
between each pair as the square root of the sum of squares
of the feature differences over the whole feature set (each
feature is normalized to zero mean and unit variance
across the entire image collection) and (2) a Mahalanobis
distance function, which further takes the correlations be-
tween features into account.

In the current 3D 3T3 dataset, most morphological,
edge, and texture mean features were either in a single-
mode, bell, shaped distribution (Figure 3a) or in a single-
mode, exponential-shaped distribution (Figure 3b). The
distributions for some texture range features were more
complex with double modes (Figure 3c).

To avoid excessive weighting of features whose abso-
lute values happen to be larger than the other features
(compare Figures 3b and 3c) in Euclidean distance
calculation, we first normalized all features to z-scores
(subtracting the mean for each feature and dividing
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Figure 3. Histograms of selected features before z-score normalization. Examples of features with (a) a roughly Gaussian distribution
(3D-SLF11.6, average object to center of fluorescence distance), (b) a roughly Poisson distribution (3D-SLF11.23, texture feature
average of co-occurrence matrix sum variance), and (c) a biomodal distribution (3D-SLF11.37, texture feature range of co-occurrence
matrix sum entropy).

by its standard deviation, both calculated across all
clones).

Due to differences in the number of single-cell images
for each clone, we randomly selected five images for each
clone to construct a global covariance matrix. This process
was repeated 100 times and the mean value was taken as
the final covariance matrix used in the Mahalanobis dis-
tance calculation.

Clustering/partitioning algorithms

Each single-cell image from all clones was first con-
verted to a feature vector and k-means clustering was per-
formed on the entire image set using varying k (from 2 to
the total number of clones). Akaike information content
(AIC) was then used as a criterion to select the optimal
value of k [15].

As a parallel approach, hierarchical clustering was per-
formed on mean feature vectors for each clone. Since the

image collection contains multiple images for each indi-
vidual protein, we can construct many estimates of the
mean feature vectors by randomly selecting half of the im-
ages for each protein. For each randomly chosen set, the
simplest tree building algorithm, unweighted pair-group
method with arithmetic mean (UPGMA) algorithm, was
used to construct a distance tree (dendrogram). These
were used to form a consensus tree [16] which contains
those structures with general agreement in the set of trees
for all random trials. Different partitionings of the pro-
tein set could be obtained by cutting the consensus tree
at different heights (lower height yields more clusters).
Optimal partitioning was selected using the AIC crite-
ria.

A third approach (Algorithm 1) started with the con-
fusion matrix created by the classifier described in the
“feature selection” section. It is expected that some clones
share a single location pattern. Consequently, images
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from different clones with the same pattern will be ex-
pected to be assigned to one of those clones largely at
random. To cluster these together, the confusion matrix
was searched for off-diagonal elements that were above a
threshold and the clones corresponding to these elements
were merged. We select the threshold to yield a similar
number of clusters to the optimal k obtained in the k-
means/AIC algorithm.

The last approach we took was visual inspection where
one or more descriptive term (e.g., uniform, cytoplasmic,
nucleolar) was assigned for each clone after visually ex-
amining all images sequentially displayed on a monitor.
Clones with the same combination of descriptive terms
were grouped into the same cluster.

Evaluation of distance functions

The choice of distance function is critical to any clus-
tering task. We do not intend to propose an optimal
distance function here since it is possible that the best
distance function should be determined individually for
different datasets, either theoretically or experimentally.
Instead we proposed to evaluate the effectiveness of differ-
ent distance functions by measuring the agreement of the
partitioning using the same distance function with differ-
ent algorithms. The intuition behind this method is that a
good distance function should be able to yield consistent
partitioning of the dataset with different clustering algo-
rithms.

In order to measure the degree of agreement among
different clustering results, we used Cohen’s κ statistic [17,
18] to compare two partitionings A and B:

κ(A,B) = Observed agreement−expected agreement
1−expected agreement

(1)

Observed agreement is defined as the portion of protein
pairs where the two clustering results agree (the pair be-
longs either to a single cluster or to two distinct clusters
for both results). Expected agreement can be defined as
the agreement between two random partitionings with
the same distribution frequencies as A and B, respectively.
Calculating the expected agreement is difficult but it can
be estimated by simulation. The κ statistic represents the
portion of agreement in the two clustering results beyond
chance, with a maximum value of 1 for perfect agree-
ment. By running multiple simulations (randomly, inde-
pendently assigning the set of clones to different partitions
in A and B based on their marginal distribution probabili-
ties and then calculating the observed κ statistic), it is also
feasible to estimate the variance of the κ statistics under
the null hypothesis that partitionings A and B are inde-
pendently and randomly distributed.

RESULTS

The 3D 3T3 dataset, consisting of 90 randomly tagged
protein clones, was obtained using CD-tagging techniques

Procedure clustering on confusionmatrix (Confusion-
Matrix, threshold)
Initialize cluster[i] = i for each i
While(max(off diagonal values in ConfusionMa-
trix) >= threshold) do

normalize the ConfusionMatrix so that the
sum of each row is 100

select i < j such that ConfusionMatrix(i, j) is
the largest above threshold off diagonal value of
ConfusionMatrix

set cluster[i] = cluster[i] ∪ cluster[j]
clear cluster[j]

set ConfusionMatrix[i,:] = ConfusionMa-
trix[i,;] + ConfusionMatrix[j,:]

set ConfusionMatrix[:,i] = ConfusionMa-
trix[:,i] + ConfusionMatrix[:,j]

clear ConfusionMatrix[j,:]
clear ConfusionMatrix[:,j]

End While
return cluster

End Procedure

Algorithm 1. Procedure: clustering on confusionmatrix (Con-
fusionMatrix, threshold).

[8]. We first constructed the optimal feature subset to use
in clustering these proteins by their location patterns, as
described in the “Methods” section. Since morphological,
edge, and texture features have all been shown to be use-
ful for classifying both 2D [3] and 3D images [12], we be-
gan our search for discriminating features using a set of 42
features drawn from all three types. Using the method de-
scribed before, a subset of 34 features (which we defined
as 3D-SLF18, see Table 1) gave the best overall classifica-
tion accuracy on a subset of 46 clones from the 3D 3T3
dataset (data not shown). This feature subset, consisting
of 9 morphological features, 1 edge feature, and 24 texture
features, was used for subsequent clustering procedures in
this study.

We next consider approaches to clustering these pro-
teins. As an initial approach, we propose clustering all
individual images and determining an optimal number
of clusters (the large number of individual images makes
this estimate feasible). To do this, individual images were
first converted to feature vectors and k-means clustering
was then performed on the whole image set using vari-
ous k values (from 2 to the total number of proteins in-
cluded in the collection). Under the reasonable assump-
tion that a majority of the cells in a clone share a sin-
gle location pattern, the range of k should cover the op-
timal number of clusters/partitionings in the image set.
Each value of k gave a specific clustering of the images
with different cluster compactness (measured by the vari-
ances within the clusters). Akaike information content
(AIC) was then used as a criterion to select the opti-
mal value of k. AIC measures the fitness of the current
model given the data, adjusted by the number of param-
eters included in the model (to avoid overfitting). This



92 X. Chen and R. F. Murphy 2005:2 (2005)

Table 1. Optimal feature set for distinguishing the 3D 3T3 images (3D-SLF18). The features are listed in decreasing order of discrim-
inating power as evaluated by SDA.

Feature name Feature description

3D-SLF11.16 The fraction of fluorescence in above threshold pixels that are along an edge

3D-SLF11.19 Average of correlation

3D-SLF11.23 Average of sum variance

3D-SLF11.31 Range of contrast

3D-SLF11.5 Ratio of maximum object volume to minimum object volume

3D-SLF11.28 Average of info measure of correlation 1

3D-SLF11.3 Average object volume (average number of above threshold pixels per object)

3D-SLF11.21 Average of inverse difference moment

3D-SLF11.24 Average of sum entropy

3D-SLF11.33 Range of sum of squares of variance

3D-SLF11.22 Average of sum average

3D-SLF11.29 Average of info measure of correlation 2

3D-SLF11.25 Average of entropy

3D-SLF11.34 Range of inverse difference moment

3D-SLF11.2 Euler number of the cell

3D-SLF11.41 Range of info measure of correlation 1

3D-SLF11.27 Average of difference entropy

3D-SLF11.26 Average of difference variance

3D-SLF11.37 Range of sum entropy

3D-SLF11.40 Range of difference entropy

3D-SLF11.35 Range of sum average

3D-SLF11.36 Range of sum variance

3D-SLF11.20 Average of sum of squares of variance

3D-SLF11.32 Range of correlation

3D-SLF11.4 Standard deviation (SD) of object volumes

3D-SLF11.38 Range of entropy

3D-SLF11.10 SD of absolute value of the horizontal component of object to protein center of fluorescence (COF) distances

3D-SLF11.9 Average absolute value of the horizontal component of object to COF distance

3D-SLF11.18 Average of contrast

3D-SLF11.13 SD of signed vertical component of object to protein center of fluorescence (COF) distances

3D-SLF11.6 Average object to COF distance

3D-SLF11.17 Average of angular second moment

3D-SLF11.42 Range of info measure of correlation 2

3D-SLF11.12 Average signed vertical component of object to protein center of fluorescence (COF) distances

gives a maximum likelihood estimate of the number of
clusters given the data. Once the partitioning of the im-
ages was determined, all of the images belonging to the
same protein were considered and the protein was allo-
cated to the cluster that contained the maximum num-
ber of images from this protein as long as it accounted
for at least 1/3 of the total images. Only those images be-
longing to this cluster were retained. When a given pro-
tein’s images were found in several clusters so that none of
the clusters had at least 1/3, that protein’s location pattern
was considered undetermined and it was dropped from
further consideration. This reflects our initial assumption
(or condition) that a protein has a unique pattern. The

result of this stage is a clustering for only those protein
images for which an assignment can be made with confi-
dence.

As a parallel approach, we can perform hierarchical
clustering on the average feature values for each protein
(after eliminating the proteins considered too variable in
the previous stage). We used the mean feature vector of
each protein to construct a dendrogram. Since the image
collection contains multiple images for each individual
protein, we can construct many trees each of which is for
a randomly selected half of the images for each protein.
These are used to form a consensus tree [16], which con-
tains the common structures with general agreement in
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7 6 5 4 3 2 1 0

z-scored Euclidean distance

Unknown-4 Uniform
Unknown-36 Cytoplasm + w nucleus
Unknown-35 Cytoplasm + w nucleus
Unknown-28 Cytoplasm
Unknown-27 Cytoplasm
Efl-gam Cytoplasm
Sep15 Cytoplasm
Cnn2 Weak uniform
Unknown-23 Cytoplasm
Kars Cytoplasm Cytopl + unk
8430422M09Ri Cytoplasm
Rpl36 Cytoplasm Rib + unk
Unknown-19 Weak uniform
Unknown-18 Cytoplasm
Txn1 Nuclmemb + w uniform
Unknown-15 Cytoplasm
Unknown-13 Cytoplasm
Unknown-12 Cytoskeleton
Unknown-34 Uniform
Unknown-33 Uniform
U17HG Uniform
Adfp-2 Uniform
Unknown-24 Uniform
Lgals1-2 Uniform
Unknown-20 Uniform
Unknown-14 Uniform
Tpm4 Cytoplasm
2610301D06Rik-2 Cytoplasm Cytoplasm
Unknown-38 Cytoplasm
Unknown-29 Small cytopl particle
2700092o18Rik Cytoplasm
Unknown-17 Mito
Unknown-16 Small cytopl part
Rab21 Small cytopl part Unk
Sdrp Mito
Atp5a1-2 Mito Mito
Unknown-30 Small cytopl particle
Adfp-1 Small cytopl particle
∗∗Ppar Nucl + nuclmemb + w cyto Nuc
Mrps18b Mito Mito + Rib + unk
Atp5a1-1 Mito Mito
Timm23-5133400D Small cytopl part
Dia1 Small cytopl part
NfiX-1 Nucleus + ER Nuc + unk
Rtn3-1 ER ER
∗∗Rps6 Mito Rib + cytopl + unk
Tubb2-1 Cytoskeleton Cytoskeleton
Unknown-6 Cytoplasm
Lasp1 Cytoplasm
Rps11 Cytoplasm + nucleus Rib + unk
2610301D06Rik-1 Cytoplasm Cytoplasm
Tctex1 Cytoskeleton Cytoskeleton
Sh3d3 Cytoskeleton
Ewsh Nucleus + w cytoplasm Nucleus
∗∗Hmgn2-2 Cytoplasm Nucleus
Hmgn2-1 Nucleus Nucleus
Canx Cytopl + nuclmemb ER
Unknown-1 Nucleus + w cytoplasm
Unknown-11 Nucleus + w cytoplasm
Similar to Siahbp Nucleus + w cytoplasm
Bat1a Nucleus + w cytoplasm Nucleus
Unknown-7 Cytoplasm + w nucleus
Unknown-41 Cytoplasm
Unknown-40 Cytoplasm
Unknown-39 Nucl + cytopl + plasmemb
Unknown-37 Cytoplasm
Unknown-22 Cytoplasm
Unknown-26 Sm cytopl part + w nucl
Unknown-21 Cytoplasm + w nucleus
Anxa2 Cytoplasm
Unknown-3 Uniform
Lgals1-1 Uniform
Anxa5 Uniform
Ltbp1-Pex12 Cytoplasm
RP23-278K23 Cytoplasm
∗∗Prim2 Cytoplasm Nucleus
Glut1 Cytoplasm + plasmemb Unknown
Unknown-2 Cytoplasm
Atox1 Mixture
Unknown-9 Nucleus
Hmga1-2 Nucleus Nucleus
Hmga1-1 Nucleus Nucleus
Unknown-5 Cytoplasm + w nucleus
Ddx3 Cytoplasm + w nucleus Unknown
∗∗Rpl32 Nucleolar Rib + unk
Unknown-32 Nucleolar
Unknown-25 Nucleolar

Figure 4. A consensus subcellular location tree generated on the 3D 3T3 image dataset using SDA-selected 3D-SLF11 features. The
columns show the protein names (if known), human observations of subcellular location, and subcellular location inferred from gene
ontology (GO) annotations. The sum of the lengths of horizontal edges connecting two proteins represents the distance between them
in the feature space. Proteins for which the location described by human observation differs significantly from that inferred from GO
annotations are marked (∗∗).
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Table 2. Comparison of clustering methods and distance functions. The agreement between the sets of clusters resulting from the
four clustering methods described in the text was measured using the κ test. The standard deviations of the statistic under the null
hypothesis were estimated to range between 0.014 and 0.023 from multiple simulations.

Clustering approaches compared
z-scored Euclidean distance Mahalanobis distance

κ κ

k-means/AIC versus consensus 1 0.5397

k-means/AIC versus ConfMat 0.4171 0.3634

Consensus versus ConfMat 0.4171 0.1977

k-means/AIC versus visual 0.2055 0.1854

Consensus versus visual 0.2055 0.1156

the set of original trees. The clusters found in this tree can
be compared to those obtained from clustering individual
images.

We first compared the performance of the two dif-
ferent distance measures. It is reasonable to assume
that a better distance function should produce greater
agreement among clustering results using different algo-
rithms. Since only the k-means/AIC and consensus hier-
archical clustering algorithms utilized the distance func-
tion, we compared the agreement between the two clus-
tering results using the κ statistic. In addition, we also
compared these results against the results obtained us-
ing the other two algorithms (visual assignment and
clustering using confusion matrix). Table 2 summarizes
the results. Clearly the z-scored Euclidean distance func-
tion produced larger agreement than the Mahalanobis
distance function. Therefore, we used the z-scored Eu-
clidean distance function for the rest of the study. An-
other major point from Table 2 is that the agreements
between visual clustering and the other approaches were
clearly lower than the agreement between any pair of
the machine clustering algorithms. The consistency seen
among the automated methods confirms their value for
generating location pattern annotations in proteomics
projects.

When Euclidean distance was used as the distance
function with the k-means/AIC algorithm for individual
images, the optimal number of clusters found was 30.
However, 13 of the 30 clusters contained only outliers
from protein clones and therefore we obtained 17 clus-
ters from this set of proteins. Out of all 90 clones, 3 were
removed by the consistency requirement described above.
The corresponding consensus tree obtained in parallel us-
ing average features is shown in Figure 4. The consensus
tree was drawn in an additive style in which the sum of
length of edges connecting pairs of proteins represents the
distance between them.

Examination of the consensus tree (and the clusters
obtained from k-means/AIC algorithms, not shown) re-
veals that proteins expected to have similar location pat-
terns were mostly grouped properly. For example, the
only three nucleolar proteins (Rpl32, Unknown-25, and
Unknown-32) are grouped together. It should also be
noted that there are two major nuclear protein clus-

ters, one with Hmga-1, Hmga-2, and Unknown-9 and
the other with Unknown-1, Unknown-11, similarly to
Siahbp1 and Bat1a. The first cluster contained proteins
with an exclusively nuclear distribution while the sec-
ond cluster contained nuclear proteins with minor cy-
toplasmic distributions. The separation of these proteins
into two clusters indicates that they are statistically distin-
guishable, in agreement with our previous results [1].

The consensus tree in Figure 4 has been incorporated
into a web interface (http://murphylab.web.cmu.edu/
services/PSLID/) that allows the underlying images for
any branch to be displayed interactively.

CONCLUSIONS AND DISCUSSION

We have previously shown that the major protein sub-
cellular location patterns can be described numerically by
SLFs. Automated classifiers trained on these features can
determine protein location patterns from previously un-
seen fluorescence images.

The observation that the SLFs used for this automated
classification were clearly effective in distinguishing sub-
cellular patterns suggested that a properly chosen parti-
tioning of proteins using SLFs would group proteins based
on their location patterns. We describe automated meth-
ods to create such a partitioning objectively. Our initial
trial on a modest set of randomly tagged proteins using
a set of morphological, edge, and texture features largely
validates this method.

It should be pointed out that by increasing the di-
mensionality of protein images (e.g., by adding time as
a fourth dimension and the presence of various drugs as
a fifth dimension), proteins currently in the same cluster
would be potentially distinguishable. This will of course
require development of new features that reflect the char-
acteristics of the higher dimensions.

In closing, we suggest that the development of an au-
tomated, systematic, and objective clustering approach
for protein location patterns is critical to finding poten-
tial targeting motifs in protein sequences, just as auto-
mated clustering of gene expression data has been a pre-
requisite for automated detection of regulatory elements
[19, 20, 21].

http://murphylab.web.cmu.edu/services/PSLID/
http://murphylab.web.cmu.edu/services/PSLID/
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