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Abstract

Immunofluorescence microscopy is widely used to analyze the subcellular locations of proteins, but current approaches rely

on visual interpretation of the resulting patterns. To facilitate more rapid, objective, and sensitive analysis, computer programs

have been developed that can identify and compare protein subcellular locations from fluorescence microscope images. The

basis of these programs is a set of features that numerically describe the characteristics of protein images. Supervised machine

learning methods can be used to learn from the features of training images and make predictions of protein location for images

not used for training. Using image databases covering all major organelles in HeLa cells, these programs can achieve over 92%

accuracy for two-dimensional (2D) images and over 95% for three-dimensional images. Importantly, the programs can

discriminate proteins that could not be distinguished by visual examination. In addition, the features can also be used to

rigorously compare two sets of images (e.g., images of a protein in the presence and absence of a drug) and to automatically

select the most typical image from a set. The programs described provide an important set of tools for those using fluorescence

microscopy to study protein location.
D 2004 Elsevier B.V. All rights reserved.
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Detailed knowledge of the subcellular location of a

protein is critical to a complete understanding of its

function. Fluorescence microscopy, especially immu-

nofluorescence microscopy, is widely used by cell

biologists to localize proteins to specific organelles or

to observe the colocalization of two or more proteins

(see Miller and Shakes, 1995; Brelie et al., 2002 for

reviews of sample preparation and imaging methods).

It is also frequently used to study changes in subcel-

lular location due to drug effects or resulting from
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development, mutation, or disease. Traditionally, vi-

sual observation is used to convert images into

answers to these types of questions. However, there

has been significant progress in recent years in devel-

oping computational methods that can automate the

image interpretation process. The goal of this review

article is to summarize a number of these recently

developed methods.
Fig. 1. Overview of classification approach.
2. Classification of subcellular location patterns

Perhaps the most important task for which immu-

nofluorescence microscopy is used is to identify the

subcellular structure or structures in which a particular

protein is found. A cell biologist who has been trained

to recognize the major subcellular structures (or

organelles) can with reasonable accuracy assign an

image of an unknown protein to one of these struc-

tures. While this approach is widely used, it suffers

from some drawbacks. These include being subject to

personal experience or training, having limited reli-

ability and reproducibility of conclusions when sim-

ilar patterns are involved, and not being suitable for

analysis of large numbers of images. To overcome

these problems, we have developed automated sys-

tems to accomplish the same task. Such pattern

recognition tasks are well-studied in the field of

machine learning. The goal is to train a computer

program using images of proteins whose subcellular

structures are known and then use that program to

assign images of unknown proteins to one of the

training classes. This is referred to as a supervised

learning approach, the patterns that are to be recog-

nized are referred to as classes, and the program is

referred to as a classifier. An overview of the super-

vised learning process is shown in Fig. 1.

In this section, we will review work on using

supervised learning to recognize subcellular patterns.

We start by discussing considerations relating to

image acquisition.

2.1. Image acquisition

The starting point for any classification system is a

collection of many images for each of the patterns to

be recognized. We have used four collections of

images for our previous work. Three of these were
generated using standard immunofluorescence meth-

ods (Miller and Shakes, 1995; Brelie et al., 2002). In

brief, cells were grown to a sub-confluent level on

collagen-coated microscope coverslips, fixed with

paraformaldehyde, and permeabilized with saponin

or Triton X-100. Cells were then labeled with dye-

conjugated antibodies or probes, or with primary

antibodies followed by dye-conjugated secondary

antibodies. The fourth collection of images we have

used was generated by imaging chimeric proteins

tagged with green fluorescent protein (GFP) in live

cells.

For our initial work on the feasibility of automated

classification of subcellular patterns, we collected

two-dimensional (2D) images of five different pat-

terns in Chinese hamster ovary cells and showed that

these could be distinguished with good accuracy

(Boland et al., 1997, 1998). Encouraged by these

results, we next collected 2D images of nine different

proteins plus a DNA marker in HeLa cells (Boland

and Murphy, 2001). The proteins were chosen to

cover the major organelles in this cell type: an ER

membrane protein, the Golgi proteins Giantin and

Gpp130, the lysosomal protein LAMP2, a mitochon-

drial outer membrane protein, the nucleolar protein

nucleolin, transferrin receptor (which mainly localized

in endosomes), and the cytoskeletal proteins beta-

tubulin and F-actin. F-actin was directly labeled with
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rhodamine phalloidin, nucleolin was labeled with

Cy3-conjugated antibodies and the other proteins

were labeled by Cy5-conjugated secondary antibod-

ies. All cells were incubated with DAPI to label DNA.

The 2D CHO and 2D HeLa collections were both

acquired using a wide-field fluorescence microscope

with nearest neighbor correction for out of focus

fluorescence.

To examine the potential value of collecting full

three-dimensional (3D) images rather than just 2D

slices, a collection of 3D images of HeLa cells was

also created (Velliste and Murphy, 2002). Images were

taken of the same nine proteins as in the 2D HeLa

collection using a three-laser confocal microscope.

Three probes were imaged for each sample: one for

the specific protein being labeled, one for total DNA,

and one for total protein. As discussed below, the

combination of the DNA and total protein images

permitted us to perform automated segmentation of

images into regions corresponding to single cells.

Examples of the 3D HeLa images are shown in Fig. 2.

A fourth collection, 3D images of mouse NIH 3T3

cells, was obtained for 49 cloned cell lines each of

which expressed a different GFP-tagged protein

(Chen et al., 2003). These lines were generated by
Fig. 2. Example 3D images of HeLa cells. Three-color, 3D image stacks w

probe, a total protein probe, and by indirect immunofluorescence for a partic

representative image from each protein class. Reprinted by permission of
random genomic insertion of a retroviral construct

carrying a GFP coding sequence, a method termed

CD-tagging (Jarvik et al., 2002). The tagging ap-

proach results in cell lines expressing a protein con-

taining GFP inserted at an exon–exon boundary.

Single color images were collected using a spinning

disk confocal microscope.

Classification results for these image collections

will be discussed below, but some recommendations

regarding sample preparation and image collection

can be made based on our prior work. These are in

addition to standard considerations for immunofluo-

rescence staining (such as choice of permeabilization

conditions, antibody dilution, secondary antibody and

fluorochrome selection) (Miller and Shakes, 1995;

Brelie et al., 2002).

(1) When classification of the patterns in single cells

is desired, cells should be plated such that they are

well separated from each other at the time of

imaging. This facilitates both manual and auto-

mated segmentation of images into single cell

regions.

(2) Images should be collected at the highest

magnification possible and with a sufficient
ere collected by confocal microscopy for cells labeled with a DNA

ular protein. Projections onto the x–y and x– z plane are shown for a

Carnegie Mellon University.
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number of pixels so that optimal sampling of the

sample is achieved. The size of the pixels in the

plane of the sample can be calculated simply

using the magnification of the objective (and any

additional elements such as an optivar before the

camera) and the size of the pixels of the camera.

For example, a camera with 23-Am square pixels

used with a 100� objective collects light from

0.23-Am square regions in the sample plane. To

extract the maximum information from the

sample, images should be collected using pixels

small enough to achieve Nyquist sampling. The

Sampling Theorem states that an image must be

sampled at twice the highest frequency signal

actually present in the image (this is called the

Nyquist frequency). The Rayleigh criterion gives

the closest spacing between two objects that can

be resolved using a given microscope objective,

which is 1.22k/2NA. Thus, for 520-nm light being

emitted from fluorescein or GFP and a micro-

scope objective with a numerical aperture of 1.3,

the Rayleigh criterion is 244 nm. If this is the

highest frequency of meaningful information in

the image, then the maximum pixel size that

would achieve Nyquist sampling is 122 nm. The

image collections described above were acquired

using a 60� (3D 3T3) or 100� (others) objective

and with a pixel size from 0.049 to 0.23 Am,

which means that they were near or at Nyquist

sampling.

(3) Images should be collected with at least one cell

entirely within the field. In many cases, accurate

classification or comparison of patterns depends

on the assumption that a whole cell is being

imaged. For example, the number of fluorescent

objects per cell or the average distance between

objects and the center of fluorescence are both

features frequently used for automated analysis

that require a full cell image.

(4) The number of images acquired for each condition

should be sufficient to enable statistically signif-

icant comparisons. This can be as few as a single

cell image if the goal is to use a classifier trained

on large numbers of cells previously acquired

under identical conditions, but more commonly

consists of at least as many cell images as the

number of features that will be used to analyze

them (see below for discussion of feature sets).
This usually consists of at least 50 cells per

condition, and this is a very feasible number given

current digital microscopes and the low cost and

high capacity of storage media.

(5) Images should be acquired using microscope

settings as close to identical as possible for all

conditions. While it may be possible to normalize

features to compensate for differences in settings,

in most cases changing factors such as camera

gain, z-slice spacing or integration time between

conditions dramatically limits the confidence with

which comparisons or classifications can be

made.

(6) If possible, parallel images of total DNA and total

protein content should be acquired. While not

necessary for recognition of most patterns,

availability of a parallel DNA image allows

additional features to be calculated and improves

classification accuracy. If a total protein image is

also available, automated segmentation of images

into single cell regions can be performed,

eliminating the need for performing this step

manually. An alternative to a parallel total protein

image is a parallel image of a protein that is

predominantly located in the plasma membrane.

The latter approach has been used to segment

tissue images into single cell regions (De Solo-

rzano et al., 2001).

(7) It is critical that images to be used for automated

analysis be appropriately organized and annotat-

ed. The preferred method is annotation within

each file at the time of acquisition, but grouping

and annotation after collection are acceptable as

long as care is taken to ensure the accuracy of any

post-acquisition annotations.

2.2. Image preprocessing and segmentation

The goal of these steps is to prepare single cell

images that are suitable for extraction of numerical

features.

Deconvolution: For our image collections acquired

with a wide-field microscope, a minimum of three

closely spaced optical sections were collected and

numerical deconvolution was used to reduce out of

focus fluorescence. While we recommend using either

confocal images or numerically deconvolved images,

it should be noted that we have not determined
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whether deconvolution is required to achieve satisfac-

tory classification results.

Background subtraction/correction: So that fea-

tures reflecting fluorescence intensity are accurate,

some approach should be used to correct for back-

ground fluorescence. We have used the simple ap-

proach of subtracting the most common pixel value

(based on the assumption that an image contains more

pixels outside the cell than inside it and that back-

ground is roughly uniform). Alternatives include sub-

tracting an image of a blank field or making estimates

of the background in local regions.

Cropping/segmentation: Cropping or segmentation

refers to identifying regions within an image that

contain only a single cell. These can be generated

by drawing polygons on an image that surround

individual cells, or by automated methods. Once the

region is identified, pixels outside the region are set to

zero. More than one region can be identified in each

image.

Thresholding: The morphological features de-

scribed below require identification of fluorescent

objects within a cell. Our current approach defines

objects as connected pixels that are ‘‘positive’’ for

fluorescence, i.e., that are above a threshold. This

threshold is chosen by an automated method (Ridler

and Calvard, 1978), and pixels below the threshold

are set to zero. For simplicity, we use the thresholded

image to calculate all features, although thresholding

is not required for calculating texture or moment

features.

Normalization: The goal of our subcellular pattern

analysis is to compare protein patterns without con-

sidering protein abundance. Each pixel (or voxel)

value is therefore divided by the total fluorescence

in the image.

2.3. Subcellular location features

For images, two kinds of inputs to a classifier can

be used: the intensity values of the pixels (or voxels) in

the images themselves, or the values of features

derived from the images. (It is worth nothing that

while the ‘‘inputs’’ to visual classification are always

the pixel values, it is unclear whether biologists trying

to classify such images operate on the image directly

or use features they derive from visual processing of

the image.) Eukaryotic cells differ dramatically in size
and shape, even within a single cell type. We have

therefore avoided pattern recognition methods that

operate directly on images and have instead used

methods that begin by extracting numerical features

to describe elements of the patterns in cell images.

This process is illustrated in Fig. 3. The features we

have used are invariant to translation, rotation and

total intensity of fluorescence, and are robust to

differences in cell shape, cell types, and fluorescence

microscopy methods. Many such features can be

imagined and we incorporate new features or modify

old ones on an ongoing basis.

To facilitate identification of the features used for a

particular experiment or system, we have defined

conventions for referring to features used to classify

subcellular patterns. We refer to sets of these as SLF

(for Subcellular Location Features) followed by a

number (e.g., SLF7) and to individual features by

the set number followed by the index within that set

(e.g., SLF1.3 refers to the 3rd feature in set 1). A

summary of the currently defined SLF is presented in

Tables 1 and 2.

The SLF are of nine basic types. Each type is

briefly described below.

Morphological (SLF1.1–1.8 and SLF7.79): In

general, morphological features describe how intensi-

ty (in this case fluorescence) is grouped. We have

described specific morphological features that are

valuable for analyzing protein patterns (Boland and

Murphy, 2001; Murphy et al., 2002). Contiguous

groups of non-zero pixels in a thresholded image are

defined as objects and contiguous group of zero-

valued pixels surrounded by non-zero pixels as holes.

Various features can be calculated from the set of

identified objects, including number of objects per

cell, number of objects minus number of holes per

cell, average number of pixels per object, average

distance of objects to the center of fluorescence (COF)

and the fraction of fluorescence not included in

objects.

Edge (SLF7.9–7.13): The set of edges in an image

can be found using one of various filtering methods.

Edge features that can be calculated from the set of

edges include the fraction of pixels distributed along

edges, and measures of how homogeneous edges are

in intensity and direction (Boland and Murphy, 2001).

Geometric (SLF1.14–1.16): These features are

derived from the convex hull of the image, which is



Fig. 3. Illustration of the feature extraction process. Images for the endosomal protein transferrin receptor (left) and the lysosomal protein

LAMP2 (right) are shown along with examples of features that distinguish them (see text for more information about specific features). An

illustration of the calculation of one of the Zernike moment features is shown at the top. For each image, the center of fluorescence is found and

a circle centered there is drawn with radius equal to 34.5 Am (empirically determined to be the average radius of a HeLa cell). When compared

to Zernike polynomial Z(4,4) (shown in the inset, see Fig. 4B for larger image), the transferrin receptor image matches better (gives a higher

feature value) because the fluorescence distributed more evenly throughout the cell than for the LAMP2 image. The middle of the figure shows

that the transferrin receptor image has a lower amount of texture variation than LAMP2. At the bottom, three morphological features are

compared. These features are all based on finding objects (the individual endosomes or lysosomes) by thresholding the image and then counting

or measuring the objects. A classifier can be trained to distinguish transferrin receptor images from LAMP2 images using these features.
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defined as the smallest convex set containing all of the

non-zero pixels. The convex hull can be easily imag-

ined as using a rubber band to wrap around the most
Table 1

Subcellular location feature sets for 2D images

Feature set Parallel DNA

image required?

Number of

features

Description

SLF7 No 84 Unselected set contai

texture and moment

SLF8 No 32 Selected by SDA fro

SLF12 No 8 Selected from SLF7,

80% accuracy

SLF13 Yes 31 Selected from SLF7

SLF15 No 44 Selected from 174 fe

texture features and 3

SLF16 Yes 47 Selected from 180 fe

texture feature, 30 w
outside points. The features we have calculated from

the convex hull are the fraction of the area of the

convex hull that is occupied by above-threshold
Reference

ning morphological, edge, geometric,

features

(Murphy et al., 2002)

m SLF7 (Murphy et al., 2002)

the smallest group to achieve over (Huang et al., 2003)

plus 6 DNA features (Murphy et al., 2003)

atures including 84 SLF7, 60 Gabor

0 wavelet features

Huang and Murphy,

submitted for publication

atures including SLF7, 60 Gabor

avelet features, and 6 DNA features

Huang and Murphy,

submitted for publication



Table 2

Subcellular location feature sets for 3D images

Feature set Parallel DNA

image required?

Number of

features

Description Reference

SLF9 Yes 28 Unselected set containing morphological features (Velliste and Murphy, 2002)

SLF10 Yes 9 Selected by SDA from SLF9 Velliste and Murphy,

in preparation

SLF11 No 42 Unselected set containing morphological, edge

and texture features

(Chen et al., 2003)

SLF14 No 14 Features in SLF9 that do not require a parallel

DNA image

Velliste and Murphy,

in preparation
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pixels, the roundness of the hull, and the eccentricity

of the hull (Boland and Murphy, 2001).

DNA (SLF2.17–2.22): The DNA features we have

used include the average object distance from the

DNA COF, the distance between protein COF and

DNA COF, ratio of the area occupied by proteins to

that occupied by DNA, and the fraction of protein

fluorescence co-localizing with DNA (Boland and

Murphy, 2001).

Haralick texture (SLF7.66–7.78): Haralick texture

features capture the correlations in gray level between

adjacent pixels (Haralick et al., 1973). The first step is

to build a matrix that measures how likely it is that a

pixel with a particular gray level will be found

adjacent to a pixel with another gray level (adjacency

can occur in four directions for a 2D image, so there

are four of these matrices). A simple view of this

matrix is that it captures whether dark pixels are more

likely to be found next to light pixels (like in a

checkerboard) or whether light and dark pixels are

more likely to be grouped together (like in an image

where the left half is dark and the right half is light).

The second step is to calculate 13 statistics from this

matrix and average these across the four directions to

make the features approximately invariant to image

rotation (Boland et al., 1998). We have described a

method for normalizing the Haralick features so that

they can be compared between cells acquired with

different pixel sizes (Murphy et al., 2002).

Zernike moment (SLF3.17–3.65): Zernike poly-

nomials are distributions defined over a circle of

radius 1. These polynomials have two parameters, n

and l that control the number of times the polynomial

rises and falls as it goes from the center of the circle to

the perimeter and the fold of radial symmetry of the

polynomial (see Fig. 4 for images showing the shapes
of three of the most important Zernike polynomials

for protein pattern identification). Each Zernike mo-

ment feature for an image measures how similar that

image is to corresponding Zernike polynomial. Thus,

a nuclear protein would be more similar to Z(2,0) (Fig.

4A) than to Z(10,6) (Fig. 4C). We calculate the

features up for n from 0 to 12, resulting in 49 Zernike

moment features (Boland et al., 1998), using a cell

radius appropriate for the cell type being analyzed.

Skeleton (SLF7.80–7.84): The skeleton of an

object is defined as what is left after recursively

removing edges without breaking it. Skeleton features

we have defined include the average length of the

skeletons, the average ratio of the skeleton length to

the area of its convex hull, average fraction of object

pixels (or fluorescence) contained within the skeleton,

and the ratio of number of branch points to the length

in the skeleton (Murphy et al., 2002).

Daubechies 4 wavelet: Daubechies wavelet fea-

tures capture both spatial and frequency attributes of

an image. The image is first recursively decomposed

to fine and coarse approximations using a discrete

wavelet transformation and then the average energies

within each quadrant are calculated as features (Huang

and Murphy, submitted for publication). Wavelet

features are not invariant to cell rotation, so we

perform a rotation of the cell image to align the

principal axis to the y-axis before the wavelets are

calculated.

Gabor texture: Gabor filters are rotations and

dilations of 2D complex Gaussian functions that have

been used for general image comparison (Manjunath

and Ma, 1996). To convolve an image with a filter, we

align the center of the filter to every point in the

image, multiply the element in filter with the

corresponding element in the image, and assign the



Fig. 4. Examples of Zernike polynomials used for feature

calculation. Zernike polynomials are complex functions defined

on a unit circle, with the real part and imaginary part having the

same shape but different phases (rotations). The real part of example

polynomials are shown as a 256� 256 gray level image in which a

black pixel represents a value of � 1, middle gray represents 0, and

white represents 1. An image will have a high Zernike feature Z(n,l)

if it has a similar shape to the corresponding Zernike polynomial

V(n,l). (A) Z(2,0) is the only feature common to all 2D feature sets

after SDA selection: SLF8, SLF13, SLF15 and SLF16. (B) Z(4,4)

ranks very highly in SLF15 and SLF16 when the new wavelet

features are added, and it is also included in SLF8. (C) Z(10,6) is in

SLF8 and SLF13, but not in SLF15 or SLF16.
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sum of the products as the new value of the center.

The mean and standard deviation of all pixel values in

the transformed image are then calculated as features

(Huang and Murphy, submitted for publication).

2.4. Feature reduction

The problem of feature-based classification primar-

ily consists of choosing the features, which can be

viewed as two subproblems: selecting or designing

features that might describe distinguishing aspects of

the images (as described above), and, identifying

which features indeed are useful for discriminating

the classes being studied. This second step (referred to

as feature selection) is usually required because the

inclusion of non-discriminative (or confounding) fea-

tures during the training of a classifier is often

observed to inhibit its ability to learn. We have put

a substantial effort into evaluating feature selection

methods for classification of subcellular patterns

(Huang et al., 2003). We found that the best

performing method was Stepwise Discriminant Anal-

ysis (SDA), a well-established method for selecting a

subset of features that contains nearly as much dis-

criminating power as the full set while eliminating

non-informative features and features that are well-

correlated with others (Jennrich, 1977). We routinely

use SDA to select discriminative features before

training a classifier.

2.5. Classification results: 2D images

As discussed above, our initial demonstration of

the feasibility of automated classification of subcellu-

lar patterns was carried out using a limited set of

patterns in CHO cells (Boland et al., 1997, 1998). We

then created a larger image collection that included

markers for all major organelles in HeLa cells. We

will discuss results for this collection in this section.

For the 2D HeLa cell collection, the starting point

was approximately 80 images each of the patterns of

nine different proteins, each with a parallel DNA

image. Each of these sets defined a class that we wish

to train a classifier to recognize. We also created a

10th class by duplicating some of the DNA images (to

simulate the pattern expected for a nuclear protein

such as a histone). The images for each class were

randomly divided into a training set consisting of 90%
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of the images and a test set consisting of the remaining

10%. The features for the training set were used to

adjust the parameters of a classifier until that classifier

was able to recognize those training images as accu-

rately as possible. The training was stopped, the

features for the test images were supplied to the

classifier, and the class predicted by the classifier

was recorded for each image. The results can be

tabulated in a confusion matrix in which each row

represents the known class of a particular image and

the columns represent the predicted class. Each ele-

ment in a confusion matrix is the percentage of images

of the known class of that row that were predicted as

the being the class of that column. The elements on

the diagonal are therefore the percentages of correct

predictions and the overall accuracy of a confusion

matrix is the average of these diagonal values.

We defined feature set SLF3 as a combination of

morphological, edge, geometric, Haralick texture, and
Fig. 5. Illustration of the basis for distinguishing similar Golgi patterns usin

image and the position of the symbol reflects the values of two SLF feature

squares) and gpp130 (closed triangles) are shown. A classifier can learn a d

separate most giantin images from most gpp130. Reprinted with permissi
Zernike moment features, and defined SLF4 as the

combination of SLF3 and DNA features. SDA was

then used to select a 37 feature subset from SLF4,

which was defined as SLF5. Using this set with a

neural network classifier, we were able to correctly

classify an average of 83–84% of the 2D HeLa

images (Murphy et al., 2000; Boland and Murphy,

2001). Of particular importance was that this classifier

was able to discriminate with 77–78% accuracy the

patterns of the two Golgi proteins, giantin and

gpp130, that we initially expected to be indistinguish-

able. This demonstrated the potential power of auto-

mated classification, in that it was not only automated

and accurate but that it was more sensitive than visual

examination. To confirm this, we later showed that a

human classifier cannot distinguish these two Golgi

patterns beyond random accuracy (Murphy et al.,

2003). An illustration of how the automated classifier

can distinguish the patterns is shown in Fig. 5.
g SLF. A scatterplot is shown in which each symbol represents a cell

s for that image. The two features that best distinguish giantin (open

ecision boundary such as that drawn on the plot in order to be able to

on from Boland and Murphy, 2001.
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To improve upon these results, we expanded SLF3

by adding skeleton features and refining the way in

which the Haralick features were calculated. The new

set was defined as SLF7. This set was combined with

the DNA features and subjected to SDA, and the

resulting 31 feature subset was defined as SLF13.

Using the neural network classifier with SLF13 im-

proved the average classification accuracy to 88%

(Murphy et al., 2003).

To further improve this accuracy, we combined 60

Gabor texture and 30 Daubechies 4 wavelet features

with SLF7 and the DNA features and again performed

SDA. The resulting set of 47 features was defined as

SLF16. When this set was used with a majority voting

ensemble classifier (which combines results from five

different classifiers), an average accuracy of 92% was

obtained (Huang and Murphy, submitted for publica-

tion). This is the best performance obtained to date on

single 2D images, and represents a halving of the

average error rate from our initial work with SLF5

(from an error rate of 17% to 8%). The confusion

matrix for this classifier is shown in Table 3. Note that

our ability to discriminate the two Golgi proteins has

risen to an average of 86% from an average of 78%

using SLF5.

2.6. 3D subcellular location features

A 2D slice through a cell cannot capture a

complete representation of the distribution of a pro-

tein in a 3D cell. We therefore also tested the
Table 3

Confusion matrix for 2D HeLa cell images using optimal majority-

voting ensemble classifier and feature set SLF16 (Due to rounding,

each row may not sum to 100)

DNA ER Gia Gpp Lam Mit Nuc Act TfR Tub

DNA 98.9 1.2 0 0 0 0 0 0 0 0

ER 0 96.5 0 0 0 2.3 0 0 0 1.2

Gia 0 0 90.8 6.9 0 0 0 0 2.3 0

Gpp 0 0 14.1 82.4 0 0 2.4 0 1.2 0

Lam 0 0 1.2 0 88.1 1.2 0 0 9.5 0

Mit 0 2.7 0 0 0 91.8 0 0 2.7 2.7

Nuc 0 0 0 0 0 0 98.8 0 1.3 0

Act 0 0 0 0 0 0 0 100 0 0

TfR 0 1.1 0 0 12.1 2.2 0 1.1 81.3 2.2

Tub 1.1 2.2 0 0 0 1.1 0 0 1.1 94.5

The average accuracy was 92.3%. From Huang and Murphy,

submitted for publication.
feasibility of classifying 3D images using variations

on the 2D SLF.

The initial set of features used for classifying 3D

images was based on direct extensions of 2D features

derived from object finding. In addition to directly

extending area to volume and 2D distance to 3D

distance, new features were defined to specifically

measure distance along the z-axis (focus axis). A total

of 28 features were described, half of which depend

on a parallel DNA image, and defined as set 3D-SLF9

(Velliste and Murphy, 2002).

Edge features revision (SLF11.15–11.16): 3D

edge features were calculated by combining edges

found separately for each 2D slice (Chen et al., 2003).

3D Haralick texture features (SLF11.17 –

SLF11.42): These features were calculated using a

direct extension of the approach used for 2D images,

in that gray-level co-occurrence matrices were calcu-

lated for 13 directions in 3D images instead of 4

directions in 2D images. The average and the range

(max–min) of the Haralick statistics were calculated

across all 13 directions, yielding a total of 26 3D

Haralick texture features (Chen et al., 2003).

2.7. Classification results: 3D images

Using the initial 3D-SLF9 feature set, an overall

accuracy of 91% was obtained for the same 10

classes of protein locations that had been used for

2D HeLa classification (Velliste and Murphy, 2002).

SDA was used to select a subset of 9 features from

3D-SLF9, which was defined as 3D-SLF10 (Velliste

and Murphy, in preparation). An average of 95%

accuracy was obtained using this feature set with

either a neural network or support vector machine

classifier (Huang and Murphy, submitted for publica-

tion). This could be improved slightly (to 95.8%) by

using a majority voting classifier. These results are

shown in Table 4.

In order to determine whether inclusion of the 3D

Haralick and edge features could improve these

results even further, SDA was used to select a subset

of 3D-SLF11 consisting of only seven features. Using

this set, which we defined as 3D-SLF17, we obtained

an average accuracy of 98% (Chen and Murphy,

submitted for publication). This is the best perfor-

mance obtained to date for the 10 patterns in the 3D

HeLa image collection.



Table 4

Confusion matrix for 3D HeLa cell images using optimal majority-

voting ensemble classifier with feature set SLF10 (Due to rounding,

each row may not sum to 100)

Cyt DNA ER Gia Gpp Lam Mit Nuc Act TfR Tub

Cyt 100 0 0 0 0 0 0 0 0 0 0

DNA 0 98.1 0 0 0 0 0 1.9 0 0 0

ER 0 0 96.6 0 0 0 0 0 1.7 0 1.7

Gia 0 0 0 98.2 0 1.9 0 0 0 0 0

Gpp 0 0 0 4 96.0 0 0 0 0 0 0

Lam 0 0 0 1.8 1.8 96.4 0 0 0 0 0

Mit 0 0 0 3.5 0 0 94.7 0 1.8 0 0

Nuc 0 0 0 0 0 0 0 100 0 0 0

Act 0 0 1.7 0 0 0 1.7 0 94.8 1.7 0

TfR 0 0 0 0 0 5.7 3.8 0 1.9 84.9 3.8

Tub 0 0 3.7 0 0 0 0 0 0 1.9 94.4

The average accuracy was 95.8%. From Huang and Murphy,

submitted for publication.
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2.8. Pixel/voxel-based classification methods

While the most robust and extensive classifiers

for subcellular patterns have employed numerical

features, some work using direct analysis of the

pixel values has been described. For example, a

Modular Neural Network classifier was applied to

a set of 3D confocal microscope images containing

six classes of proteins (Danckaert et al., 2002). The

2D slice containing the most above-threshold pixels

was chosen from each 3D image, the slices were

down-sampled to 20� 24 pixels, and these were

divided into training and testing sets for the modular

neural network. An average classification accuracy

of 84% was obtained on the single slices. When a set

of five slices from each 3D image was used to find a

consensus prediction, the accuracy rose to an average

of 97% across the six classes. Given the heavy

downsampling used in this approach, it is unlikely

that it would be able to distinguish highly similar

patterns such as the two Golgi proteins discussed

above.

An approach involving pixel-by-pixel comparison

of the location of a target protein to nuclear and

membrane markers labeled with other fluorescent

probes has also been described (Camp et al., 2002).

This approach was applied to classify tissue micro-

arrays into normal and cancerous categories and

demonstrated to perform at least as well as visual

scoring by pathologists.
3. Choosing representative images

Choosing a representative from many fluores-

cence microscope images is frequently required for

presentations and publications. When the choice is

made by visual examination, it may be influenced

by the investigator’s confidence in the thesis the

image is being used to support or may more likely

reflect the ‘‘best’’ image obtained than the typical

one.

Inspired by success in representing images with

numerical features for purposes of classification, an

objective method for selecting representative images

by comparing features from images was developed

(Markey et al., 1999). As with classification, the

starting point is to calculate the SLFs for all images

in the set. The mean of the features is then calcu-

lated using a robust algorithm that is not influenced

by outliers. (Outlier removal is important because

cells that are dead, dying or pre-mitotic may show

very different feature values than healthy interphase

cells and can dramatically affect the mean value for

a set.) The distance of each image from the mean is

then calculated and the images are ranked from

shortest to longest distance. The software for

performing this ranking is called TypIC, for Typical

Image Chooser, and is available as a web service at

http://murphylab.web.cmu.edu/services/TypIC.
4. Comparing two sets of images

The subcellular location of a protein can change in

response to the cellular environment. To determine the

effect of various experimental conditions, especially

drug treatment, on protein location, fluorescent mi-

croscope images can be used to record the images

with and without treatment. This approach is widely

used, and the determination of whether a protein has

changed in response to the treatment is currently made

by visual examination. However, this approach suffers

from the same drawbacks as described above for

classification and typical image selection. When po-

tential changes are small, different examiners may

draw different conclusion. For example, if a protein

redistributes between two visually similar organelles,

such as endosomes and lysosomes, the change might

not be seen.

 http:\\www.murphylab.web.cmu.edu\services\TypIC 
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An alternative is to use pattern analysis methods to

compare sets of images (Roques and Murphy, 2002).

Again, the SLFs can be used to represent images, and

the comparison becomes determining whether the

features of the two sets of images are statistically

different. Each set of images is represented by an n*m

matrix, where n is the number of images and m is the

number of features. Every row contains a feature

vector extracted from one image. The Statistical

Imaging Experiment Comparator (SImEC) system

(Roques and Murphy, 2002) compares the feature

matrices for the two sets using the multivariate ver-

sion of the traditional t-test, the Hotelling T 2-test. The

result is an F statistic with 2 degrees of freedom: the

number of features, and the total number of images

minus the number of features. If the F value is larger

than a critical value determined for those degrees of

freedom and a particular confidence level, then the

two sets can be considered to be different at that

confidence level.

When this approach was used to perform pairwise

comparisons on the 10 classes of the 2D HeLa image

collection, all 10 classes were found to be statistically

distinguishable at the 95% confidence level. This is

consistent with our ability to train classifiers to

distinguish them with high accuracy. In control

experiments, the SImEC system obtained the correct

results when two subsets drawn from the same image

class were compared. An additional control experi-

ment was performed in which two different probes

were used to label the same protein, giantin. Sets of

images obtained by indirect immunofluorescence us-

ing either a rabbit anti-giantin antiserum or a mouse

anti-giantin monoclonal antibody were found to be

statistically indistinguishable at the 95% confidence

level. This result confirms that the SImEC approach

can appropriately distinguish patterns that are differ-

ent while still considering as indistinguishable pat-

terns that should be the same.
5. Implications for cell and molecular biology

research

The combination of readily available digital fluo-

rescence microscopes with the methods described

here has the potential for significantly changing the

way in which immunofluorescence microscopy is
used to answer biological questions. Whether for

high-throughput determination of the major subcellu-

lar organelle in which unknown proteins are found or

for determining whether a protein changes its distri-

bution in response to a particular drug or transgene,

computerized methods have been shown to be signif-

icantly easier to use, more accurate, and more sensi-

tive than visual examination. The availability of these

methods can be expected to add an important quan-

titative and objective element to cell biology experi-

ments that will facilitate their use both in detailed

characterization of individual proteins and in large-

scale proteomics efforts.
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