Machine Learning Approaches to Biological Research: Bioimage Informatics and Beyond

Lecture 4: Active learning

Robert F. Murphy
External Senior Fellow, Freiburg Institute for Advanced Studies
Ray and Stephanie Lane Professor of Computational Biology, Carnegie Mellon University

September 29-October 1, 2009
The problem of subcellular location analysis

Plus: Time scale from subsecond to years
Automated Science (Active Learning)

- Experimental Data
- Automated Interpretation
- Other Data
- What new data is needed the most?
- Modeling
Efficient Acquisition and Learning of Fluorescence Microscope Data Models

1. Use all the input from the microscope to model the data set

2. Choose acquisition requests that allow us to construct an accurate model in the shortest amount of time

Develop a mathematical framework and algorithms to build accurate models of fluorescence microscope data sets as well as design intelligent acquisition systems based on those models

Charles Jackson & Jelena Kovacevic
Active Learning

Slides from Irina Rish and Barbara Engelhardt
Problem Setup

• Unlabeled data available but labels are expensive

• I would like to choose which data to label
 – to maximize the “value” of that data to my problem
 – to minimize the “cost” of labeling
Toy Example: threshold function

Unlabeled data: labels are all 0 then all 1 (left to right)

Classifier is threshold function:

\[h_w(x) = 1 \text{ if } x > w \text{ (0 otherwise)} \]

Goal: find transition between 0 and 1 labels in minimum steps

Naïve method: choose points to label at random on line

Better method: binary search for transition between 0 and 1
Example: Sequencing genomes

- What genome should be sequenced next?
- Criteria for selection?
- Optimal species to detect functional elements across genomes
- Breadth of species encompassing biological phenomena of interest
- (Not the same as the most diverged set of species)
- Marsupials should be sequenced next

[McAuliffe et al., 2004]
Example: collaborative filtering

• Users rate only a few movies usually; ratings “expensive”

• Which movies do you show users to best extrapolate movie preferences?

• Also known as questionnaire design

• Baseline questionnaires:
 – Random: m movies randomly
 – Most Popular Movies: m most frequently rated movies

• Most popular movies is **not** better than random design!

• Popular movies rated highly by all users; do not discriminate tastes

[Yu et al. 2006]
Entropy Function

• A measure of information in random event X with possible outcomes $\{x_1,...,x_n\}$

$$H(x) = - \sum_i p(x_i) \log_2 p(x_i)$$

• Comments on entropy function:
 – Entropy of an event is zero when the outcome is known
 – Entropy is maximal when all outcomes are equally likely

• The average minimum yes/no questions to answer some question (connection to binary search)

[Shannon, 1948]
Loss Functions

• A function L that maps an event to a real number, representing cost or regret associated with event
• E.g., in regression problems, $L(y, \theta^T f(x))$ maps to reals
• Examples:
 – Quadratic (least squares) loss
 – Linear (absolute value) loss
 – 0-1 (binary) loss
 – Exponential
Risk Function

- Risk is also known as expected loss
- The (frequentist) risk function is explicitly expected loss

\[R(\Theta, X) = \sum_x L(\theta, x) \ p(x | \theta) \]

- Bayes risk is defined as posterior expected loss:

\[R(\Theta, X) = \sum_\theta L(\theta, x) \ p(\theta | x) \]

- Trade-off: Bayes risk performs well when \(p(\theta | x) \) accurate
- “Gain” here is chooses \(x \) to minimize expected loss
What is Active Learning?

• Unlabeled data are readily available; labels are expensive

• Want to use adaptive decisions to choose which labels to acquire for a given dataset

• Goal is accurate classifier with minimal cost
Active learning warning

- Choice of data is only as good as the model itself
- Assume a linear model, then two data points are sufficient
- What happens when data are not linear?
Active Learning

• *Active learner* is able to query world and receive a response before outputting a classifier
• Learner selects queries (but cannot impact response)
• Two general methods:
 – Select “most uncertain” data given model and parameters
 – Select “most informative” data to optimize expected gain
• Given model M with parameters θ and loss function L
• Query q with response x updates the model posterior θ'

\[L(\theta', X) = E_x L(\theta') \]
Active Learning Approaches

- Membership queries
- Uncertainty Sampling
- Query by committee
Membership queries

Earliest model of active learning in theory work [Angluin 1992]

$X = \text{space of possible inputs, like } \{0,1\}^n$
$H = \text{class of hypotheses}$

Target concept $h^* \in H$ to be identified exactly.
You can ask for the label of any point in X: no unlabeled data.

$H_0 = H$
For $t = 1, 2, \ldots$
 pick a point $x \in X$ and query its label $h^*(x)$
 let $H_t = \text{all hypotheses in } H_{t-1} \text{ consistent with } (x, h^*(x))$

What is the minimum number of “membership queries” needed to reduce H to just $\{h^*\}$?

Slide credit: S. Dasgupta
Membership queries: example

$X = \{0, 1\}^n$
$H = \text{AND-of-positive-literals, like } x_1 \land x_3 \land x_{10}$

$S = \{\} \text{ (set of AND positions)}$
For $i = 1$ to n:
 ask for the label of $(1, \ldots, 1, 0, 1, \ldots, 1)$ [0 at position i]
 if negative: $S = S \cup \{i\}$

Total: n queries

General idea: {	extcolor{red}{synthesize}} highly informative points.
Each query cuts the {	extit{version space}} -- the set of consistent hypotheses -- in half.
Problem

Many results in this framework, even for complicated hypothesis classes.

[Baum and Lang, 1991] tried fitting a neural net to handwritten characters. Synthetic instances created were incomprehensible to humans!

[Lewis and Gale, 1992] tried training text classifiers. “an artificial text created by a learning algorithm is unlikely to be a legitimate natural language expression, and probably would be uninterpretable by a human teacher.”
Uncertainty Sampling

[Lewis & Gale, 1994]

• Query the event that the current classifier is most uncertain about

If uncertainty is measured in Euclidean distance:

• Used trivially in SVMs, graphical models, etc.
A Sequential Algorithm for Training Text Classifiers

David D. Lewis (lewis@research.att.com) and William A. Gale (gale@research.att.com)

AT&T Bell Laboratories; Murray Hill, NJ 07974; USA

Abstract
The ability to cheaply train text classifiers is critical to their use in information retrieval, content analysis, natural language processing, and other tasks involving data which is partly or fully textual. An algorithm for sequential sampling during machine learning of statistical classifiers was developed and tested on a newswire text categorization task. This method, which we call uncertainty sampling, reduced by as much as 500-fold the amount of training data that would have to be manually classified to achieve a given level of effectiveness.
Score Function

\[\text{score}_{\text{uncert}}(S_t) = \text{uncertainty}(P(S_t | O_t)) \]

\[= H(S_t) \]

\[= \sum_i P(S_t = i) \log P(S_t = i) \]
Uncertainty Sampling Example

<table>
<thead>
<tr>
<th>t</th>
<th>Sex</th>
<th>Age</th>
<th>Test A</th>
<th>Test B</th>
<th>Test C</th>
<th>S_t</th>
<th>$P(S_t)$</th>
<th>$H(S_t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>20-30</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>?</td>
<td>0.02</td>
<td>0.043</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>20-30</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>?</td>
<td>0.01</td>
<td>0.024</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>30-40</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>?</td>
<td>0.05</td>
<td>0.086</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>60+</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>FALSE</td>
<td>0.12</td>
<td>0.159</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>10-20</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>?</td>
<td>0.01</td>
<td>0.024</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>20-30</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>?</td>
<td>0.96</td>
<td>0.073</td>
</tr>
</tbody>
</table>
Uncertainty Sampling Example

<table>
<thead>
<tr>
<th>t</th>
<th>Sex</th>
<th>Age</th>
<th>Test A</th>
<th>Test B</th>
<th>Test C</th>
<th>S_t</th>
<th>$P(S_t)$</th>
<th>$H(S_t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>20-30</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>?</td>
<td>0.01</td>
<td>0.024</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>20-30</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>?</td>
<td>0.02</td>
<td>0.043</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>30-40</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>?</td>
<td>0.04</td>
<td>0.073</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>60+</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>FALSE</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>10-20</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>TRUE</td>
<td>0.06</td>
<td>0.112</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>20-30</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>?</td>
<td>0.97</td>
<td>0.059</td>
</tr>
</tbody>
</table>
Uncertainty Sampling

GOOD: couldn’t be easier
GOOD: often performs pretty well

BAD: $H(S_t)$ measures information gain about the \textit{samples}, not the \textit{model}

Sensitive to noisy samples
If our objective is to reduce the prediction error, then

“the expected information gain of an unlabeled sample is **NOT** a sufficient criterion for constructing good queries”
Query by Committee

H. S. Seung*
Racah Institute of Physics and Center for Neural Computation
Hebrew University
Jerusalem 91904, Israel
seung@mars.huji.ac.il

M. Opper†
Institut für Theoretische Physik
Justus-Liebig-Universität Giessen
D-6300 Giessen, Germany
manfred.opper@physik.uni-giessen.dbp.de

H. Sompolinsky
Racah Institute of Physics and Center for Neural Computation
Hebrew University
Jerusalem 91904, Israel
haim@galaxy.huji.ac.il

Abstract

We propose an algorithm called *query by committee*, in which a committee of students is trained on the same data set. The next query is chosen according to the principle of maximal disagreement. The algorithm is studied for two toy models: the high-low game and perceptron learning of another perceptron. As the number of queries goes to infinity, the committee algorithm yields asymptotically finite information gain. This leads to generalization error that decreases exponentially with the number of examples. This in marked contrast to learning from randomly chosen inputs, for which the information gain approaches zero and the generalization error decreases with a relatively slow inverse power law. We suggest that asymptot...
FALSE!

FALSE!

FALSE!

Model #1 Model #2
TRUE! TRUE!

Model #1 Model #2
Ooh, now we’re going to learn something for sure!

One of them is definitely wrong.
The Original QBC Algorithm

As each example arrives...

1. Choose a committee, C, (usually of size 2) randomly from Version Space

2. Have each member of C classify it

3. If the committee disagrees, select it.