Automated Microscope Image Interpretation

Robert F Murphy
Ray & Stephanie Lane Professor of Computational Biology
Departments of Biological Sciences, Biomedical Engineering and Machine Learning
Automated Interpretation

- Traditional analysis of fluorescence microscope images has occurred by visual inspection

- My group’s goal over the past fourteen years has to been automate the interpretation, to yield better
 - Objectivity
 - Sensitivity
 - Reproducibility
Focus on subcellular location analysis

- We will focus on analysis of subcellular location, but most of the methods we will discuss are equally applicable to other levels or organization/resolution.
But first a word about acquisition

- Carefully consider
 - What resolution/dimension images do you need for your task?
 - How many images/cells do you need per condition?
- Keep conditions (especially microscopy settings) constant!
Initial Goal: Supervised Learning

Assign proteins to *major* subcellular structures using fluorescent microscopy.

This is a microtubule pattern.
The Challenge

- Pixel-by-pixel or region-by-region matching will not work for cell patterns because different cells have different shapes, sizes, orientations
- Organelles/structures within cells are not found in fixed locations
- *Instead, describe each image numerically and compare the descriptors*
Feature-based, Supervised learning approach

1. Create sets of images showing the location of many different proteins (each set defines one class of pattern)

2. Reduce each image to a set of numerical values (“features”) that are insensitive to position and rotation of the cell

3. Use machine learning methods to “learn” how to distinguish each class using the features
Example of classification using Morphological Features

<table>
<thead>
<tr>
<th></th>
<th>ER</th>
<th>Nucleoli</th>
</tr>
</thead>
<tbody>
<tr>
<td># of objects</td>
<td>108</td>
<td>6</td>
</tr>
<tr>
<td>Average size of objects</td>
<td>83</td>
<td>232</td>
</tr>
<tr>
<td>Average distance to COF</td>
<td>31</td>
<td>4</td>
</tr>
</tbody>
</table>

Any of these features could be used to distinguish these two classes.
The goal: Learn to recognize all major subcellular patterns

<table>
<thead>
<tr>
<th>ER</th>
<th>giantin</th>
<th>gpp130</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LAMP</th>
<th>Mito</th>
<th>Nucleolin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Actin</th>
<th>TfR</th>
<th>Tubulin</th>
<th>DNA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2D Images of HeLa cells
Feature levels and granularity

Object features
- Single Object

Cell features
- Single Cell
- Single Field

Field features

Granularity: 2D, 3D, 2Dt, 3Dt

Aggregate/average operator
Cell Segmentation
Single cell segmentation approaches

- Voronoi
- Watershed
- Seeded Watershed
- Level Set Methods
- Graphical Models
Given a set of seeds, draw vertices and edges such that each seed is enclosed in a single polygon where each edge is equidistant from the seeds on either side.
Voronoi Segmentation Process

- Threshold DNA image (downsample?)
- Find the objects in the image
- Find the centers of the objects
- Use as seeds to generate Voronoi diagram
- Create a mask for each region in the Voronoi diagram
- Remove regions whose object that does not have intensity/size/shape of nucleus
Thresholding

Gray-level image → Binary image

- Thresholding refers to the division of the pixels of an image into two classes: those below a certain value (the threshold) and those at or above it. The two classes are often shown in white and black, respectively.

- Thresholding serves as a means to consider only a *subset* of the pixels of an image.
Ridler-Calvard Method

- Find threshold that is equidistant from the average intensity of pixels below and above it
Ridler-Calvard Method

Blue line shows histogram of intensities, green lines show average to left and right of red line, red line shows midpoint between them or the RC threshold.
Ridler-Calvard Method

original

thresholded
Thresholding
After thresholding and removing small objects
After triangulation
After removing edge cells and filtering
Watershed Segmentation

- Intensity of an image
 ~ elevation in a landscape
 - Flood from minima
 - Prevent merging of “catchment basins”
 - Watershed borders built at contacts between basins

http://www.ctic.purdue.edu/KYW/glossary/whatisaws.html
Seeded Watershed Segmentation

- Drawback is that the number of regions may not correspond to the number of cells
- Seeded watershed allows water to rise only from predefined sources (seeds)
- If DNA image available, can use same approach to generate these seeds as for Voronoi segmentation
- Can use seeds from DNA image but use total protein image or plasma membrane protein image for watershed segmentation
Seeded Watershed Segmentation

Original image

Seeds and boundary

Applied directly to protein image (no DNA image)

Note non-linear boundaries
Feature Extraction
2D Subcellular Location Features

- Morphological (based on objects after thresholding)
 - Object number
 - Object size
 - Object shape (including skeleton features)
 - Object position
 - Object overlap with marker (DNA)
- Edge (amount, preferred orientation)
- Moments (Zernike)
- Texture (Haralick)
- Transform
Illustration – Skeleton
Haralick Texture Features

- Correlations of adjacent pixels in gray level images
- Start by calculating co-occurrence matrix P:
 $N \times N$ matrix, $N=$ number of gray level.
 Element $P(i,j)$ is the probability of pixels with value i being adjacent with pixels with value j
- Four directions in which a pixel can be adjacent
Co-occurrence Matrix
Pixel Resolution and Gray Levels

- Texture features are influenced by the number of gray levels and pixel resolution of the image
- Optimization for each image dataset required
- Alternatively, features can be calculated for many resolutions
Transform features

- Can apply an image transform and then calculate features
 - Fourier transform
 - Wavelet transforms
Feature selection

- Having too many features can confuse a classifier
- Can use comparison of feature distributions between classes to choose a subset of features that gets rid of uninformative or redundant features

- Some methods
 - Principal Components Analysis
 - Non-Linear Principal Components Analysis
 - Independent Components Analysis
 - Information Gain
 - Stepwise Discriminant Analysis
Simple two class problem

Describe each image by features
Train classifier
Classification illustration

Given + and – images, we want to label ‘?’

Feature #1 (e.g., ‘area’)

Feature #2
(e.g., roundness)
Linear Discriminants

- Fit multivariate Gaussian to each class
- Measure distance from ? to each Gaussian

bright.
Decision trees

Again we want to label ‘?’

Feature #2
(e.g., roundness)

Feature #1 (e.g., ‘area’)

Slide courtesy of Christos Faloutsos
Decision trees

so we build a decision tree:

Feature #2 (e.g., roundness)

Feature #1 (e.g., ‘area’)

Slide courtesy of Christos Faloutsos
Decision trees

so we build a decision tree:

Slide courtesy of Christos Faloutsos
Decision trees

■ Goal: split address space in (almost) homogeneous regions

Slide courtesy of Christos Faloutsos
Support vector machines

- Again we want to label ‘?’

Feature #2
(e.g., roundness)

Feature #1 (e.g., ‘area’)

Slide courtesy of Christos Faloutsos
Support Vector Machines (SVMs)

- Use single linear separator??

Slide courtesy of Christos Faloutsos
Support Vector Machines (SVMs)

- Use single linear separator??

Slide courtesy of Christos Faloutsos
Support Vector Machines (SVMs)

- Use single linear separator??

Slide courtesy of Christos Faloutsos
Support Vector Machines (SVMs)

- Use single linear separator??

Slide courtesy of Christos Faloutsos
Support Vector Machines (SVMs)

- Use single linear separator??

Round.

Slide courtesy of Christos Faloutsos
Support Vector Machines (SVMs)

- we want to label ‘?’ - linear separator??
- A: the one with the widest corridor!

Slide courtesy of Christos Faloutsos
Support Vector Machines (SVMs)

- What if the points for each class are not readily separated by a straight line?
- Use the “kernel trick” – project the points into a higher dimensional space in which we hope that straight lines will separate the classes.
- “Kernel” refers to the function used for this projection.
Support Vector Machines (SVMs)

- Definition of SVMs explicitly considers only two classes
- What if we have more than two classes?
- Train multiple SVMs
- Two basic approaches
 - One against all (one SVM for each class)
 - Pairwise SVMs (one for each pair of classes)
 - Various ways of implementing this
Cross-Validation

- If we train a classifier to minimize error on a set of data, have no ability to estimate (generalize) error that will be seen on new dataset
- To calculate generalizable accuracy, we use n-fold cross-validation
- Divide images into n sets, train using $n-1$ of them and test on the remaining set
- Repeat until each set is used as test set and average results across all trials
- Variation on this is called leave-one-out
2D Classification Results

True Class vs Output of the Classifier

<table>
<thead>
<tr>
<th>True Class</th>
<th>DNA</th>
<th>ER</th>
<th>Gia</th>
<th>Gpp</th>
<th>Lam</th>
<th>Mit</th>
<th>Nuc</th>
<th>Act</th>
<th>TFR</th>
<th>Tub</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA</td>
<td>99</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ER</td>
<td>0</td>
<td>97</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Gia</td>
<td>0</td>
<td>0</td>
<td>91</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Gpp</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>82</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Lam</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>88</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Mit</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>92</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Nuc</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>99</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Act</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TFR</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>81</td>
<td>2</td>
</tr>
<tr>
<td>Tub</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>95</td>
</tr>
</tbody>
</table>

Overall accuracy = 92%
Human Classification Results

<table>
<thead>
<tr>
<th>True Class</th>
<th>Output of the Classifier</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DNA</td>
</tr>
<tr>
<td>DNA</td>
<td>100</td>
</tr>
<tr>
<td>ER</td>
<td>0</td>
</tr>
<tr>
<td>Gia</td>
<td>0</td>
</tr>
<tr>
<td>Gpp</td>
<td>0</td>
</tr>
<tr>
<td>Lam</td>
<td>0</td>
</tr>
<tr>
<td>Mit</td>
<td>0</td>
</tr>
<tr>
<td>Nuc</td>
<td>0</td>
</tr>
<tr>
<td>Act</td>
<td>0</td>
</tr>
<tr>
<td>Tfr</td>
<td>0</td>
</tr>
<tr>
<td>Tub</td>
<td>0</td>
</tr>
</tbody>
</table>

Overall accuracy = 83%
Subcellular Pattern Classification: Computer vs. Human

Even better results using multiresolution methods
Even better results for 3D images
3D HeLa cell images

<table>
<thead>
<tr>
<th>Nuclear</th>
<th>ER</th>
<th>Giantin</th>
<th>gpp130</th>
<th>Lysosomal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mitochondria</th>
<th>Nucleolar</th>
<th>Actin</th>
<th>Endosomal</th>
<th>Tubulin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Images collected using facilities at the Center for Biologic Imaging courtesy of Simon Watkins
3D Classification Results

<table>
<thead>
<tr>
<th>True Class</th>
<th>Output of the Classifier</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DNA</td>
</tr>
<tr>
<td>DNA</td>
<td>98</td>
</tr>
<tr>
<td>ER</td>
<td>0</td>
</tr>
<tr>
<td>Gia</td>
<td>0</td>
</tr>
<tr>
<td>Gpp</td>
<td>0</td>
</tr>
<tr>
<td>Lam</td>
<td>0</td>
</tr>
<tr>
<td>Mit</td>
<td>0</td>
</tr>
<tr>
<td>Nuc</td>
<td>0</td>
</tr>
<tr>
<td>Act</td>
<td>0</td>
</tr>
<tr>
<td>TfR</td>
<td>0</td>
</tr>
<tr>
<td>Tub</td>
<td>0</td>
</tr>
</tbody>
</table>

Overall accuracy = 98%
High content screening/analysis

- Commercially available systems for automated microscopy, coupled with systems for analyzing images
- Typically involve segmentation, feature calculation, classification
- Typically involve hand-tuned feature sets and classifiers
- Mainly used for drug screening
Unsupervised Learning to Identify High-Resolution Protein Patterns
Images of CD-tagged 3T3 cells
Features can be used to measure similarity of protein patterns

This allows us for the first time to create a systematic, objective, framework for describing subcellular locations: a **Subcellular Location Tree**

Start by grouping two proteins whose patterns are most similar, keep adding branches for less and less similar patterns
http://murphylab.web.cmu.edu/services/PSLID/tree.html
Nucleolar Proteins
Predominantly Nuclear Proteins with Some Punctate Cytoplasmic Staining
Nuclear and Cytoplasmic Proteins with Some Punctate Staining
Decomposing (unmixing) complex patterns
Decomposing mixture patterns

- Clustering or classifying whole cell patterns will consider each combination of two or more “basic” patterns as a unique new pattern.
- Desirable to have a way to decompose mixtures instead.
- One approach would be to assume that each basic pattern has a recognizable combination of different types of objects.
Object type determination

- Rather than specifying object types, we can choose to learn them from the data
- Use subset of SLFs to describe objects
- Perform k-means clustering for k from 2 to 40
- Evaluate goodness of clustering using Akaike Information Criterion
- Choose k that gives lowest AIC
Cluster Number Selection

- Akaike Information Criterion (AIC) = 2k − 2ln(L)
- k = number of clusters
- L = likelihood of model given data
Example of Object Types

Type A

Type B

Type C

Type D
Unmixing: Learning strategy

- Once object types are known, each cell in the training (pure) set can be represented as a vector of the amount of fluorescence for each object type.

- Learn probability model for these vectors for each class.

- Mixed images can then be represented using mixture fractions times the probability distribution of objects for each class.
Two-stage Strategy for unmixing unknown image

- Find objects in unknown (test) image, classify each object into one of the object types using learned object type classifier built with all objects from training images.

- For each test image, make list of how often each object type is found.

- Find the fractions of each class that give “best” match to this list.
Test samples

- How do we test a subcellular pattern unmixing algorithm?
- Need images of known mixtures of pure patterns – difficult to obtain “naturally”
- Created test set by mixing different proportions of two probes that localize to different cell parts (lysosomes and mitochondria)
Tao Peng, Ghislain Bonamy, Estelle Glory, Sumit Chanda, Dan Rines
(Genome Research Institute of Novartis Foundation)
Mitotracker
Mixture of Lysotracker and Mitotracker
Pattern unmixing results

- Predicted pattern fractions
- Linear unmixing
- Multinomial unmixing
- Fluorescence fraction unmixing
Generative models of subcellular patterns
LAMP2 pattern

Cell membrane

Nucleus

Protein
Nuclear Shape - Medial Axis Model

Represented by two curves

the medial axis

width along the medial axis

Medial axis

Rotate

width
Synthetic Nuclear Shapes
With added nuclear texture
Cell Shape
Description: Distance Ratio

$$r = \frac{d_1 + d_2}{d_2}$$

Capture variation as a principal components model
Generation
Modeling Vesicular Organelles

Original

Filtered

Fitted Gaussians
Object Positions

\[r = \frac{d_2}{d_1 + d_2} \]
Models for protein-containing objects

- Mixture of Gaussian objects
- Learn distributions for number of objects and object size
- Learn probability density function for objects relative to nucleus and cell

r: normalized distance, a: angle to major axis
Synthesized Images

- Lysosomes
- Endosome

SLML toolbox - Ivan Cao-Berg, Tao Peng, Ting Zhao

Have portable tool for generating images from model
Model Distribution

- Generative models provide better way of distributing what is known about “subcellular location families” (or other imaging results, such as illustrating change due to drug addition)
- Have initial XML design for capturing the models for distribution
- Have portable tool for generating images from the model
Generation Process

Protein
Cell Shape
Nuclear Model
XML
Generating Multiple Distributions for Simulations

Protein
Cell Shape
Nuclear Model

XML

Simulation 1
Simulation 2
Simulation 3
Conclusions
Combining Models for Cell Simulations

- Protein 1
 - Cell Shape
 - Nuclear Model

- Protein 2
 - Cell Shape
 - Nuclear Model

- Protein 3
 - Cell Shape
 - Nuclear Model
 - XML

Shared Nuclear and Cell Shape

Simulation
Example combination

Red = nuclear membrane, plasma membrane
Blue = Golgi
Green = Lysosomes
Cyan = Endosomes
Conclusions

- Computers better than people at recognizing complex subcellular patterns
- Automated analysis of subcellular patterns in tissues demonstrated – useful for potential biomarker discovery
- Complex patterns can be unmixed – useful for monitoring transitions between patterns (e.g., translocations)
- Generative models can be built directly or indirectly from data to summarize results and make predictions – useful for cell simulations
Software availability

- http://murphylab.web.cmu.edu/software
- http://www.cellprofiler.org
- http://www.openmicroscopy.org
- http://www.cbi-tmhs.org/Dcelliq/